Search Results

You are looking at 1 - 2 of 2 items for

  • Author: R Bland x
  • Refine by access: All content x
Clear All Modify Search
R Bland
Search for other papers by R Bland in
Google Scholar
PubMed
Close
,
R L Sammons
Search for other papers by R L Sammons in
Google Scholar
PubMed
Close
,
M C Sheppard
Search for other papers by M C Sheppard in
Google Scholar
PubMed
Close
, and
G R Williams
Search for other papers by G R Williams in
Google Scholar
PubMed
Close

Abstract

3,5,3′-Tri-iodothyronine (T3), 1α,25(OH)2-vitamin D3 (D3) and retinoids activate related nuclear receptors which interact by heterodimerisation to regulate gene expression. Actions of each hormone are discrete and may be specified by changes in the relative concentrations of their receptors (T3R, vitamin D receptor (VDR), retinoic acid receptor (RAR), retinoid X receptor (RXR)). T3, D3 and retinoids are essential for skeletal development and maintenance and we have previously shown complex interactions amongst their signalling pathways in osteosarcoma cells. In these studies we demonstrate that similar T3R, VDR, RAR and RXR proteins are co-expressed in both osteoblast lineage cell primary cultures and osteosarcoma cells by Western blotting. We investigated whether hormone interactions in bone result from changes in receptor stoichiometry. Cells were treated with combinations of T3, D3, 9-cis retinoic acid (9-cis RA) and all-trans retinoic acid (RA) that are known from previous studies to produce complex cell specific responses. No alteration in expression of any receptor protein was seen in response to any hormone combination in three phenotypically distinct osteosarcoma cell lines. Thus, in contrast to studies of overexpressed receptors in vitro, changes in the physiological concentrations of endogenous T3R, VDR, RAR and RXR do not specify discrete hormone actions in osteoblastic cells. Other unidentified factors are likely to modulate hormone action in these bone cells.

Journal of Endocrinology (1997) 154, 63–74

Restricted access
R Bland
Search for other papers by R Bland in
Google Scholar
PubMed
Close
,
CA Worker
Search for other papers by CA Worker in
Google Scholar
PubMed
Close
,
BS Noble
Search for other papers by BS Noble in
Google Scholar
PubMed
Close
,
LJ Eyre
Search for other papers by LJ Eyre in
Google Scholar
PubMed
Close
,
IJ Bujalska
Search for other papers by IJ Bujalska in
Google Scholar
PubMed
Close
,
MC Sheppard
Search for other papers by MC Sheppard in
Google Scholar
PubMed
Close
,
PM Stewart
Search for other papers by PM Stewart in
Google Scholar
PubMed
Close
, and
M Hewison
Search for other papers by M Hewison in
Google Scholar
PubMed
Close

Studies in vitro and in vivo have shown that corticosteroids play an important role in bone physiology and pathophysiology. It is now established that corticosteroid hormone action is regulated, in part, at the pre-receptor level through the expression of isozymes of 11beta-hydroxysteroid dehydrogenase (11beta-HSD), which are responsible for the interconversion of hormonally active cortisol to cortisone. In this report we demonstrate 11beta-HSD activity in human osteoblast (OB) cells. Osteosarcoma-derived OB cell lines TE-85, MG-63 and SaOS-2 and fibrosarcoma Hs913T cells express the type 2 isoform of 11beta-HSD, as determined by reverse transcription polymerase chain reaction (RT-PCR) and specific enzyme assays. Enzyme activity was shown to be strictly NAD dependent with a Km of approximately 71 nM; 11beta-HSD type 1 mRNA expression and enzyme activity were not detected. All four cell lines expressed mRNA for the glucocorticoid receptor (GR) and mineralocorticoid receptor, but specific binding was only detectable with radiolabelled dexamethasone (Kd=10 nM) and not aldosterone. MG-63 cells had two to three times more GR than the other OB cells, which correlated with the higher levels of 11beta-HSD 2 activity in these cells. In contrast to the osteosarcoma cell studies, RT-PCR analysis of primary cultures of human OB cells revealed the presence of mRNA for 11beta-HSD 1 as well as 11beta-HSD 2. However, enzyme activity in these cells remained predominantly oxidative, i.e. inactivation of cortisol to cortisone (147 pmol/h per mg protein at 500 nM cortisol) was greater than cortisone to cortisol (10.3 pmol/h per mg protein at 250 nM cortisone). Data from normal human OB and osteosarcoma cells demonstrate the presence of an endogenous mechanism for inactivation of glucocorticoids in OB cells. We postulate that expression of the type 1 and type 2 isoforms of 11beta-HSD in human bone plays an important role in normal bone homeostasis, and may be implicated in the pathogenesis of steroid-induced osteoporosis.

Free access