Search Results

You are looking at 1 - 2 of 2 items for

  • Author: R L Heisler x
  • Refine by access: All content x
Clear All Modify Search
S H Shin
Search for other papers by S H Shin in
Google Scholar
PubMed
Close
,
R L Heisler
Search for other papers by R L Heisler in
Google Scholar
PubMed
Close
, and
C S-S Lee
Search for other papers by C S-S Lee in
Google Scholar
PubMed
Close

Abstract

The neurohypophysial hormones, oxytocin and vasopressin, are present as non-covalently bound complexes with their designated neurophysin in the secretory granules of the posterior pituitary. The neurophysins are generally considered to be biologically inert carrier proteins for oxytocin and vasopressin. We have examined the actions of bovine neurophysin-I (bNP-I), bovine neurophysin-II (bNP-II), rat neurophysin (rat NP) and oxytocin on prolactin release using primary cultured rat pituitary cells. A dynamic perifusion system was chosen to test their stimulatory actions. The rat NP and bNP-II stimulated prolactin release. It is a new observation that rat NP and bNP-II stimulate prolactin release from primary cultured rat pituitary cells. The maximum sensitivities, the lowest concentration which stimulate prolactin release, of rat NP, bNP-II, bNP-I and oxytocin in primary cultured cells were 1 nmol/l, 1 nmol/l, 1000 nmol/l and 1 nmol/l respectively. The maximum sensitivities of rat NP and bNP-II were within the physiologically relevant concentrations.

Journal of Endocrinology (1995) 144, 225–231

Restricted access
S. H. Shin
Search for other papers by S. H. Shin in
Google Scholar
PubMed
Close
,
R. L. Heisler
Search for other papers by R. L. Heisler in
Google Scholar
PubMed
Close
, and
M. S. Szabo
Search for other papers by M. S. Szabo in
Google Scholar
PubMed
Close

ABSTRACT

Patterns of prolactin release were examined using stimulating and inhibiting agents. Primary cultured pituitary cells primed with oestrogens were used for perifusion experiments. TRH (100 nmol/l) increased the peak prolactin concentration to 360% of the basal concentration, while TRH, under inhibition by 1 nmol somatostatin/l, raised the peak prolactin concentration to 185% of the basal levels. When the somatostatin concentration was increased to 10, 100 and 1000 nmol/l, TRH still stimulated prolactin release to 128%, 121% and 140% respectively, indicating that concentrations of somatostatin of 10 nmol/l or higher did not further suppress the stimulatory effect of TRH. TRH (1 μmol/l) stimulated prolactin release under the influence of 0 (control), 1, 10, 100 and 1000 nmol dopamine/l (plus 0·1 mmol ascorbic acid/l) to 394, 394, 241, 73 and 68% of the basal concentration respectively, showing that the dopamine concentrations and peak prolactin concentrations induced by TRH have an inverse linear relationship in the range 1–100 nmol dopamine/l. The stimulatory effect of dibutyryl cyclic AMP (dbcAMP) on prolactin release was also tested. The relationship between dbcAMP and somatostatin was similar to that between TRH and somatostatin. When adenohypophyses of male rats were used for perifusion experiments, somatostatin (100 nmol/l) did not inhibit basal prolactin release from the fresh male pituitary in contrast with the primary cultured pituitary cells, but dopamine (1 μmol/l) effectively inhibited prolactin release.

In conclusion, (1) oestrogen converts the somatostatin-insensitive route into a somatostatin-sensitive route for basal prolactin release, (2) TRH-induced prolactin release passes through both somatostatin-sensitive and -insensitive routes, (3) dopamine blocks both somatostatin-sensitive and -insensitive routes and (4) cAMP activates both somatostatin-sensitive and -insensitive routes.

Journal of Endocrinology (1991) 130, 79–86

Restricted access