Search Results

You are looking at 1 - 2 of 2 items for

  • Author: R O'Dowd x
  • Refine by Access: All content x
Clear All Modify Search
Free access

ME Wlodek, KT Westcott, A Serruto, R O'Dowd, L Wassef, PW Ho, and JM Moseley

Evidence implicates pivotal roles for parathyroid hormone-related protein (PTHrP) during lactation, including stimulation of mammary and pup growth. As spontaneously hypertensive rat (SHR) pups are growth restricted compared with the control Wistar Kyoto (WKY), we examined the relative roles of pup suckling and maternal lactational environment on pup growth, mammary PTHrP, and milk PTHrP and calcium concentrations. SHR pups were lighter compared with the control from 6 days. SHR mammary PTHrP content and milk PTHrP were lower but maternal plasma PTHrP was raised compared with WKY. SHR mammary morphological development was also impaired compared with control. Cross fostering growth-restricted pups onto WKY mothers increased pup weight in association with normal mammary function and higher milk PTHrP and calcium. Control pups suckling on an SHR mother had reduced body weight. Both cross fostering groups were associated with increased maternal and milk PTHrP concentrations, indicating the importance of suckling, together with a functional mammary gland. The results suggested that impaired SHR mammary function and milk PTHrP are associated with a reduced SHR postnatal growth. Our data also indicated that milk and mammary PTHrP are regulated by different mechanisms but that they are influenced by the maternal lactational environment and the suckling pup.

Free access

Edward T Wargent, Jacqueline F O'Dowd, Mohamed S Zaibi, Dan Gao, Chen Bing, Paul Trayhurn, Michael A Cawthorne, Jonathan R S Arch, and Claire J Stocker

Previous studies by Tisdale et al. have reported that zinc-α2-glycoprotein (ZAG (AZGP1)) reduces body fat content and improves glucose homeostasis and the plasma lipid profile in Aston (ob/ob) mice. It has been suggested that this might be mediated via agonism of β3- and possibly β2-adrenoceptors. We compared the effects of dosing recombinant human ZAG (100 μg, i.v.) and BRL35135 (0.5 mg/kg, i.p.), which is in rodents a 20-fold selective β3- relative to β2-adrenoceptor agonist, given once daily for 10 days to male C57Bl/6 Lep ob /Lep ob mice. ZAG, but not BRL35135, reduced food intake. BRL35135, but not ZAG, increased energy expenditure acutely and after sub-chronic administration. Only BRL35135 increased plasma concentrations of glycerol and non-esterified fatty acid. Sub-chronic treatment with both ZAG and BRL35135 reduced fasting blood glucose and improved glucose tolerance, but the plasma insulin concentration 30 min after administration of glucose was lowered only by BRL35135. Both ZAG and BRL35135 reduced β1-adrenoceptor mRNA levels in white adipose tissue, but only BRL35135 reduced β2-adrenoceptor mRNA. Both ZAG and BRL35135 reduced β1-adrenoceptor mRNA levels in brown adipose tissue, but neither influenced β2-adrenoceptor mRNA, and only BRL35135 increased β3-adrenoceptor and uncoupling protein-1 (UCP1) mRNA levels in brown adipose tissue. Thus, ZAG and BRL35135 had similar effects on glycaemic control and shared some effects on β-adrenoceptor gene expression in adipose tissue, but ZAG did not display the thermogenic effects of the β-adrenoceptor agonist, nor did it increase β3-adrenoceptor or UCP1 gene expression in brown adipose tissue. ZAG does not behave as a typical β3/2-adrenoceptor agonist.