Search Results

You are looking at 1 - 3 of 3 items for

  • Author: R Shinohara x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

M-A Hattori, Y Shinohara, E Yoshino, M Kanzaki, I Kojima, and R Horiuchi

Abstract

The effect of human GH (hGH) on the regulation of epidermal growth factor (EGF) receptor was investigated during differentiation of FSH-treated rat granulosa cells, which has been reported to be mediated by a cAMP-dependent mechanism. By measuring the binding of [125I]iodo-EGF to the intact cells, FSH was shown to cause increases in the number of EGF binding sites after culture for 72 h. When granulosa cells were cultured with hGH, the number of FSH-induced EGF binding sites was augmented, with a half-maximal effect at about 10 μg hGH/l and a maximal stimulatory concentration of 100 μg/l. The stimulatory effect of hGH was absolutely dependent on insulin which by itself showed stimulatory effects on EGF binding sites. Scatchard analysis of EGF binding sites indicated that treatment with hGH increased the number of EGF binding sites (17 200 sites/cell after treatment with FSH; 31 700 sites/cell after FSH plus hGH), but did not alter the binding affinity. The augmentation was observed after culturing for 48 h and increased progressively with time, reaching 280% of the level after FSH treatment by 120 h. Although progesterone synthesis was increased by hGH, the markers of cell differentiation such as cAMP synthesis and LH binding sites were suppressed, indicating hGH inhibition of the cAMP-mediated signal. The action of hGH on the EGF binding sites was not accompanied by cell proliferation. These findings indicate that hGH has a novel action on the regulation of rat granulosa cell EGF binding sites and that the granulosa cell may possess both cAMP-dependent and -independent mechanisms for expression of EGF binding sites.

Journal of Endocrinology (1994) 142, 69–75

Free access

T Tsugawa, R Shinohara, A Nagasaka, I Nakano, F Takeda, M Nagata, N Oda, Y Sawai, N Hayakawa, A Suzuki, and M Itoh

An accelerated polyol pathway in diabetes contributes to the development of diabetic complications. To elucidate diabetic nephropathy involving also renal tubular damage, we measured urinary sorbitol concentration concomitantly with urinary N-acetyl-D-glucosaminidase (NAG) excretion in WBN-kob diabetic rats.Twenty-four-hour urinary sorbitol concentrations increased in the diabetic rats in parallel with whole blood sorbitol concentrations. An increase in 24-h urinary NAG excretion coincided with the elevated urinary sorbitol levels in the diabetic rats. The administration of epalrestat, an aldose reductase inhibitor, reduced the increased whole blood and urinary sorbitol concentrations and urinary NAG excretion concomitantly with renal aldose reductase inhibition in the diabetic rats.These results indicate that diabetic nephropathy involves distorted cell function of renal tubules, and that treatment with epalrestat may prevent at least the progress of the nephropathy.

Free access

R Shinohara, T Mano, A Nagasaka, R Hayashi, K Uchimura, I Nakano, F Watanabe, T Tsugawa, M Makino, H Kakizawa, M Nagata, K Iwase, Y Ishizuki, and M Itoh

Free radicals, hydroxyperoxides and H(2)O(2) are all known to damage cell components. This study was designed to compare the concentrations of hydroxyperoxide and free radical scavengers in the cardiac muscles of old rats in the hyper- or hypothyroid condition, to determine whether rates of peroxidation would differ with age, thyroid status, or both. Rats were rendered hyper- or hypothyroid by administration of l-thyroxine or methimazole for 4 weeks. Among the old rats, the lipid peroxide (LPO) concentrations, measured as thiobarbituric acid (TBA) reactants, were significantly greater in the hyperthyroid than in the euthyroid state and the LPO concentrations measured as TBA+Fe(3+) reactants, which may be precursors of LPO, were significantly greater in the hyperthyroid state, whereas in young rats, the LPO concentrations measured by TBA or TBA+Fe(3+) methods did not differ significantly in the hyperthyroid state. In the euthyroid state, the concentration of LPO measured as TBA+Fe(3+) reactants was significantly reduced with age. Xanthine oxidase (XOD) activity also was markedly increased with age, being more pronounced in the hyperthyroid than in the euthyroid state. The Mn and Cu/Zn superoxide dismutase activities were greater in the hyperthyroid than in the euthyroid state. Glutathione peroxidase activity decreased with age in the euthyroid and, particularly, in the hyperthyroid state. Catalase activity was not affected in the old rats. Concentrations of alpha-tocopherol in the old rats were high in the hyperthyroid state and low in the hypothyroid state, whereas the levels of beta- and gamma-tocopherols in these rats were unchanged in both conditions as compared with the euthyroid state findings. Data suggest that the site of free radical generation differs in older rats, with additional shifts in the location of intracellular lipid peroxidation being noted during hyperthyroidism. Thus, as rats age, the reduction of the free radical scavenger system and the increase in LPO and XOD activities might induce myocardial dysfunction.