Among the many responses to GH administration is suppression of voluntary feed intake (FI) in some species, attributed to improvement in the efficiency of nutrient utilization and, therefore, reduced need for ingested substrates. Commercial broiler chickens have been genetically selected for generations for rapid growth, realized largely via the major correlated response of increased voluntary feed consumption. Neuropeptide Y (NPY) and monoamines play very important roles in the central regulation of feeding. Preliminary studies from our laboratory suggest that the appetite-suppressive effect of GH may be independent of its actions as a repartitioning agent, and may involve alterations in NPY expression at the pre-translational level. The purpose of this investigation was to explore the dose-response nature of the appetite-suppressive effect of GH in juvenile broilers, and the possible involvement of NPY and monoamines in this process. A GH dose-response study was conducted using 8-week-old female broilers infused i.v. with GH in a pulsatile pattern for 7 days at 0, 10, 50, 100 or 200 microgram/kg body weight per day. Hypothalamic NPY and epinephrine (EP) concentrations decreased in a dose-related manner with GH. At the highest dosage, voluntary FI decreased 19% (P<0.05) and hypothalamic NPY mRNA decreased approximately 50% in the infundibular nuclei and midline region (P<0.0001). In contrast, birds pairfed to the high-GH dosage group did not differ from controls, verifying that changes in NPY and monoamines were not secondary to reduced FI. We conclude that hypothalamic NPY and EP are likely candidates to explore further as mediators of the appetite-suppressive effect of GH.
Search Results
You are looking at 1 - 7 of 7 items for
- Author: R Zhou x
- Refine by Access: All content x
X Wang, Day JR, Y Zhou, JL Beard, and R Vasilatos-Younken
M L Forsling, Y Zhou, and R J Windle
Abstract
The renal actions of vasopressin were studied in the conscious female rat. Vasopressin caused a dose-dependent increase in sodium excretion when administered at 40–160 pmol/min. The highest dose, which increased sodium excretion from 10·4 ± 0·3 μmol/min (n=32) to 18·3 ± 0·8 μmol/min (n=8, P<0·001), also caused a significant rise in glomerular filtration rate (GFR). The antidiuretic and natriuretic responses to vasopressin varied significantly over the 4 days of the oestrous cycle. Both responses were greatest on pro-oestrus, being −57 ± 3 and 52 ± 3% above the control values with 80 pmol vasopressin/min. Responses of similar magnitude were also seen on dioestrus day 1. On these two cycle days the effects on urine flow and sodium excretion were accompanied by a significant increase in GFR. Smaller antidiuretic and natriuretic responses were seen on oestrus and dioestrus day 2, without concomitant changes in GFR. As the plasma vasopressin concentrations produced by hormone infusion were similar on each day of the cycle, the renal responsiveness to vasopressin appears to vary over the 4 days of the oestrous cycle. This may be important in terms of alteration and possible disturbances of fluid balance which may occur during reproductive cycles and pregnancy.
Journal of Endocrinology (1996) 148, 457–464
R Zhou, D Diehl, A Hoeflich, H Lahm, and E Wolf
IGFs have multiple functions regarding cellular growth, survival and differentiation under different physiological and pathological conditions. IGF effects are modulated systemically and locally by six high-affinity IGF-binding proteins (IGFBP-1 to -6). Despite their structural similarity, each IGFBP has unique properties and exhibits specific functions. IGFBP-4, the smallest IGFBP, exists in both non-glycosylated and N-glycosylated forms in all biological fluids. It is expressed by a wide range of cell types and tIssues, and its expression is regulated by different mechanisms in a cell type-specific manner. IGFBP-4 binds IGF-I and IGF-II with similar affinities and inhibits their actions under almost all in vitro and in vivo conditions. In this review, we summarize the available data regarding the following aspects of IGFBP-4: genomic organization, protein structure-function relationship, expression and its regulation, as well as IGF-dependent and -independent actions. The biological significance of IGFBP-4 for reproductive physiology, bone formation, renal pathophysiology and cancer is discussed.
Y Zhou, R Spangler, CE Maggos, XM Wang, JS Han, A Ho, and MJ Kreek
Acute administration of morphine stimulates the secretion of hypothalamic-pituitary-adrenal (HPA) hormones, ACTH, beta-endorphin and corticosterone in the rat. In this study we investigated the effects of repeated multiple-dose morphine on HPA activity under two different conditions: without or with water restriction stress. Rats received six intermittent injections of morphine (6.25 mg/kg per injection, s.c.) every 2 h and were killed 30 min after the last injection. The results were as follows. (1) Morphine significantly elevated plasma ACTH and corticosterone levels; water restriction also significantly increased ACTH secretion, but with no significant increase of plasma corticosterone levels. In contrast, rats treated with morphine under the water restriction condition failed to show any increases of either ACTH or corticosterone levels. (2) Morphine did not change pro-opiomelanocortin (POMC) mRNA levels in the anterior pituitary; whereas water restriction significantly increased the POMC mRNA levels. The water restriction-induced increases of POMC mRNA in the anterior pituitary were absent in the rats which received morphine. (3) Morphine significantly increased POMC mRNA levels in the hypothalamus; water restriction had no effect. The morphine-induced increases in POMC mRNA in the hypothalamus were absent in the rat under the water restriction condition. These findings, that the effects of morphine on HPA activation or POMC mRNA expression depend on the presence of stress, suggest a counter-regulatory role of opiates on a stress response and opioid gene expression.
R Vasilatos-Younken, Y Zhou, X Wang, JP McMurtry, RW Rosebrough, E Decuypere, N Buys, VM Darras, S Van Der Geyten, and F Tomas
In contrast to most vertebrates, GH reportedly has no effect upon somatic growth of the chicken. However, previous studies employed only one to two dosages of the hormone, and limited evidence exists of a hyperthyroid response that may confound its anabolic potential. This study evaluated the effects of 0, 10, 50, 100 and 200 microgram/kg body weight per day chicken GH (cGH) (0-200 GH) infused i.v. for 7 days in a pulsatile pattern to immature, growing broiler chickens (9-10 birds/dosage). Comprehensive profiles of thyroid hormone metabolism and measures of somatic growth were obtained. Overall (average) body weight gain was reduced 25% by GH, with a curvilinear, dose-dependent decrease in skeletal (breast) muscle mass that was maximal (12%) at 100 GH. This profile mirrored GH dose-dependent decreases in hepatic type III deiodinase (DIII) activity and increases in plasma tri-iodothyronine (T(3)), with bot! h also maximal (74 and 108% respectively) at 100 GH. No effect on type I deiodinase was observed. At the maximally effective dosage, hepatic DIII gene expression was reduced 44% versus controls. Despite dose-dependent, fold-increases in hepatic IGF-I protein content, circulating IGF-I was not altered with GH infusion, suggesting impairment of hepatic IGF-I release. Significant, GH dose-dependent increases in plasma non-esterified fatty acid and glucose, and overall decreases in triacylglycerides were also observed. At 200 GH, feed intake was significantly reduced (19%; P<0.05) versus controls; however, additional control birds pair-fed to this level did not exhibit any responses observed for GH-treated birds. The results of this study support a pathway by which GH impacts on thyroid hormone metabolism beginning at a pretranslational level, with reduced hepatic DIII gene expression, translating to reduced protein (enzyme) ex! pression, and reflected in a reduced level of peripheral T(3)-degrading activity. This contributes to decreased conversion of T(3) to its inactive form, thereby elevating circulating T(3) levels. The hyper-T(3) state leads to reduced net skeletal muscle deposition, and may impair release of GH-enhanced, hepatic IGF-I. In conclusion, GH has significant biological effects in the chicken, but profound metabolic actions predominate that may confound positive, IGF-I-mediated skeletal muscle growth.
H. Zhou, D. D. Leaver, J. M. Moseley, B. Kemp, P. R. Ebeling, and T. J. Martin
ABSTRACT
Peptides containing residues 1–34 of parathyroid hormone-related protein (PTHrP) and of bovine parathyroid hormone (bPTH), and recombinant full-length PTHrP(1–141) were infused i.v. into anaesthetized thyroparathyroidectomized rats to compare their action and potency on the renal handling of calcium, phosphate and cyclic AMP (cAMP) in vivo. All three peptides decreased the excretion of calcium and increased the excretion of phosphate and cAMP in the urine, with PTHrP(1–34) and PTHrP(1–141) having virtually equipotent effects. Thus the essential requirements for the major physiological activity of PTHrP on the kidney are contained within the 34 amino-terminal amino acids. For all three peptides, the lowest infusion rate that increased phosphate and cAMP excretion was 0·01 nmol/kg per h, whereas the lowest infusion rate that decreased calcium excretion was 0·025 nmol/kg per h for the PTHrP peptides and 0·1 nmol/kg per h for bPTH(1–34). The response to the PTHrP peptides was maximal at an infusion rate of 01 nmol/kg per h for both calcium and phosphate. Since the kidney is either equally sensitive to PTHrP and bPTH(1–34), or more sensitive to PTHrP than to bPTH(1–34), the hypercalcaemia of humoral hypercalcaemia of malignancy may develop because uncontrolled secretion of PTHrP increases the renal reabsorption of calcium to such an extent that even a modest increase in the inflow of calcium into the blood raises plasma calcium concentration.
Journal of Endocrinology (1989) 122, 229–235
Damian G Romero, Ming Yi Zhou, Licy L Yanes, Maria W Plonczynski, Tanganika R Washington, Celso E Gomez-Sanchez, and Elise P Gomez-Sanchez
Regulators of G-protein signaling (RGS proteins) interact with Gα subunits of heterotrimeric G-proteins, accelerating the rate of GTP hydrolysis and finalizing the intracellular signaling triggered by the G-protein-coupled receptor (GPCR)–ligand interaction. Angiotensin II (Ang II) interacts with its GPCR in adrenal zona glomerulosa cells and triggers a cascade of intracellular signals that regulates steroidogenesis and proliferation. On screening for adrenal zona glomerulosa-specific genes, we found that RGS4 was exclusively localized in the zona glomerulosa of the rat adrenal cortex. We studied RGS4 expression and regulation in the rat adrenal gland, including the signaling pathways involved, as well as the role of RGS4 in steroidogenesis in human adrenocortical H295R cells. We reported that RGS4 mRNA expression in the rat adrenal gland was restricted to the adrenal zonal glomerulosa and upregulated by low-salt diet and Ang II infusion in rat adrenal glands in vivo. In H295R cells, Ang II caused a rapid and transient increase in RGS4 mRNA levels mediated by the calcium/calmodulin/calmodulin-dependent protein kinase and protein kinase C pathways. RGS4 overexpression by retroviral infection in H295R cells decreased Ang II-stimulated aldosterone secretion. In reporter assays, RGS4 decreased Ang II-mediated aldosterone synthase upregulation. In summary, RGS4 is an adrenal gland zona glomerulosa-specific gene that is upregulated by aldosterone secretagogues, in vivo and in vitro, and functions as a negative feedback of Ang II-triggered intracellular signaling. Alterations in RGS4 expression levels or functions may be involved in deregulations of Ang II signaling and abnormal aldosterone secretion.