Search Results

You are looking at 1 - 3 of 3 items for

  • Author: R. M. Elliott x
Clear All Modify Search
Full access

R. M. Elliott, L. M. Morgan, J. A. Tredger, S. Deacon, J. Wright and V. Marks

ABSTRACT

The acute effects of different macronutrients on the secretion of glucagon-like peptide-1(7–36)amide (GLP-1(7–36)amide) and glucose-dependent insulinotropic polypeptide (GIP) were compared in healthy human subjects. Circulating levels of the two hormones were measured over a 24-h period during which subjects consumed a mixed diet. In the first study, eight subjects consumed three equicaloric (375 kcal) test meals of carbohydrate, fat and protein. Small increases in plasma GLP-1(7–36) amide were found after all meals. Levels reached a maximum 30 min after the carbohydrate and 150 min after the fat load. Ingestion of both carbohydrate and fat induced substantial rises in GIP secretion, but the protein meal had no effect. In a second study, eight subjects consumed 75 g glucose or the equivalent portion of complex carbohydrate as boiled brown rice or barley. Plasma GIP, insulin and glucose levels increased after all three meals, the largest increase being observed following glucose and the smallest following the barley meal. Plasma GLP-1(7–36)amide levels rose only following the glucose meal. In the 24-h study, plasma GLP-1(7–36)amide and GIP concentrations were increased following every meal and remained elevated throughout the day, only falling to fasting levels at night. The increases in circulating GLP-1(7–36)amide and GIP levels following carbohydrate or a mixed meal are consistent with their role as incretins. The more sustained rises observed in the daytime during the 24-h study are consistent with an anabolic role in lipid metabolism.

Journal of Endocrinology (1993) 138, 159–166

Full access

J. L. Elliott, J. M. Oldham, G. R. Ambler, P. C. Molan, G. S. G. Spencer, S. C. Hodgkinson, B. H. Breier, P. D. Gluckman, J. M. Suttie and J. J. Bass

ABSTRACT

Insulin-like growth factor-II (IGF-II) binding in the growing tip of the deer antler was examined using autoradiographical studies, radioreceptor assays and affinity cross-linking studies. Antler tips from red deer stags were removed 60 days after the commencement of growth, and cryogenically cut into sections. Sections were incubated with radiolabelled IGF-II, with or without an excess of competing unlabelled IGF-II and analysed autoradiographically. Radiolabelled IGF-II showed high specific binding in the reserve mesenchyme and perichondrium zones, which are tissues undergoing rapid differentiation and cell division in the antler. Binding to all other structural zones was low and significantly (P<0·001) less than binding to the reserve mesenchyme/perichondrium zones. Radioreceptor assays on antler microsomal membrane preparations revealed that the IGF-II binding was to a relatively homogeneous receptor population (K d= 1·3 × 10−10 mol/l) with characteristics that were not entirely consistent with those normally attributed to the type 2 IGF receptor. Tracer binding was partly displaceable by IGF-I and insulin at concentrations above 10 nmol/l. However, affinity cross-linking studies revealed a single band migrating at 220 kDa under non-reducing conditions, indicative of the type 2 IGF receptor. These results indicate that, in antler tip tissues, IGF-II binds to sites which have different binding patterns and properties from receptors binding IGF-I. This may have functional significance as it appears that, whilst IGF-I has a role in matrix development of cartilage, IGF-II may have a role in the most rapidly differentiating and proliferating tissues of the antler.

Journal of Endocrinology (1993) 138, 233–241

Full access

Melyssa R Bratton, James W Antoon, Bich N Duong, Daniel E Frigo, Syreeta Tilghman, Bridgette M Collins-Burow, Steven Elliott, Yan Tang, Lilia I Melnik, Ling Lai, Jawed Alam, Barbara S Beckman, Steven M Hill, Brian G Rowan, John A McLachlan and Matthew E Burow

The estrogen receptor α (ERα) is a transcription factor that mediates the biological effects of 17β-estradiol (E2). ERα transcriptional activity is also regulated by cytoplasmic signaling cascades. Here, several Gα protein subunits were tested for their ability to regulate ERα activity. Reporter assays revealed that overexpression of a constitutively active Gαo protein subunit potentiated ERα activity in the absence and presence of E2. Transient transfection of the human breast cancer cell line MCF-7 showed that Gαo augments the transcription of several ERα-regulated genes. Western blots of HEK293T cells transfected with ER±Gαo revealed that Gαo stimulated phosphorylation of ERK 1/2 and subsequently increased the phosphorylation of ERα on serine 118. In summary, our results show that Gαo, through activation of the MAPK pathway, plays a role in the regulation of ERα activity.