Search Results

You are looking at 1 - 2 of 2 items for

  • Author: RI McLachlan x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

S.R. Davis, Z. Krozowski, R.I. McLachlan, and H.G. Burger


We report inhibin α- and βA -subunit gene expression in the human corpus luteum and placenta using human α-subunit and bovine βA -subunit nucleic acid probes. In addition, we have demonstrated the presence of immunoreactive and bioactive inhibin in human corpora lutea. Our findings suggest that this tissue is a significant source of inhibin during the luteal phase of the normal human menstrual cycle.

Free access

K Pratis, L O'Donnell, GT Ooi, PG Stanton, RI McLachlan, and DM Robertson

Testosterone is metabolised to the more potent androgen, dihydrotestosterone, by the 5alpha-reductase (5alphaR) enzyme. We previously showed that 5alpha-reduced androgens are important for maintaining androgen action on rat spermatogenesis when testicular testosterone concentrations are reduced. This study investigated expression and activity of the 5alphaR isoforms, type 1 (5alphaR-1) and type 2 (5alphaR-2), in the rat during hormone manipulation in order to understand the factors that regulate the testicular concentration of 5alphaR and testicular 5alpha-reduced androgen biosynthesis. Testicular 5alphaR-1 and 5alphaR-2 mRNA and enzyme activity were measured by real-time PCR and specific enzyme assays respectively. Hormone levels were first suppressed using two models of gonadotrophin suppression: testosterone and oestradiol treatment (LH/testosterone deficiency) or GnRH immunisation (LH/testosterone and FSH deficiency). Hormones were then either restored or suppressed for 6 days by a variety of hormonal treatments. 5alphaR-1 mRNA and enzyme activity increased when testosterone was suppressed, yet restoration of testosterone decreased 5alphaR-1 mRNA and enzyme activity, suggesting that testosterone negatively regulates 5alphaR-1. suppression of FSH decreased 5alphaR-1 mRNA yet FSH administration increased 5alphaR-1 mRNA, but no changes in 5alphaR-1 activity were observed within the 6 day period. In contrast to 5alphaR-1, testosterone did not affect the testicular concentration of 5alphaR-2 mRNA or activity, but there was evidence for modulation of 5alphaR-2 activity by FSH. Measurement of testicular androgens revealed that 5alphaR-1 was primarily responsible for the production of 5alpha-reduced metabolites. It is concluded that the 5alphaR isoforms in rat testis are differentially regulated by testosterone and FSH: testosterone negatively regulated 5alphaR-1 mRNA and enzyme activity but had no affect on 5alphaR-2, whereas FSH positively regulated 5alphaR-1 mRNA and appeared to regulate 5alphaR-2.