Search Results

You are looking at 1 - 3 of 3 items for

  • Author: RJ Denver x
  • Refine by access: All content x
Clear All Modify Search
RG Manzon
Search for other papers by RG Manzon in
Google Scholar
PubMed
Close
and
RJ Denver
Search for other papers by RJ Denver in
Google Scholar
PubMed
Close

Several hypotheses have been proposed to explain the increase and sustained expression of pituitary thyrotropin (TSH) in the presence of elevated plasma thyroid hormone (TH) concentrations at metamorphic climax in amphibians. It has been proposed that the negative feedback of TH on TSH is inoperative until metamorphic climax, and that it is established at this time by the upregulation of pituitary deiodinase type II (DII); DII converts thyroxine (T(4)) to 3,5,3'-triiodothyronine (T(3)). However, earlier investigators, using indirect measures of TSH, reported that TH negative feedback on TSH was functional in premetamorphic tadpoles. In an effort to understand pituitary TSH regulation during amphibian metamorphosis, we analyzed multiple pituitary genes known or hypothesized to be involved in TSH regulation in tadpoles of Xenopus laevis. Tadpole pituitary explant cultures were used to examine direct negative feedback on TSH mRNA expression. Negative feedback is operative in the early prometamorphic tadpole pituitary and both T(3) and T(4) can downregulate TSH mRNA expression throughout metamorphosis. The expression of both DII and TH receptor betaA mRNAs increased during development and peaked at climax; however, these increases coincided with similar increases in deiodinase type III, which inactivates TH. Moreover, corticotropin-releasing factor (CRF) receptors, CRF binding protein and thyrotropin-releasing hormone receptor type 2 mRNA expression also peaked at climax. Our data suggest that the regulation of TSH is more complex than the timing of DII expression, and likely involves a balance between stimulation of TSH synthesis and secretion by neuropeptides (e.g. CRF) of hypothalamic or pituitary origin, increased pituitary sensitivity to neuropeptides through upregulation of their receptors, and intrapituitary TH levels.

Free access
LP Krain
Search for other papers by LP Krain in
Google Scholar
PubMed
Close
and
RJ Denver
Search for other papers by RJ Denver in
Google Scholar
PubMed
Close

Corticosteroids, the primary circulating vertebrate stress hormones, are known to potentiate the actions of thyroid hormone in amphibian metamorphosis. Environmental modulation of the production of stress hormones may be one way that tadpoles respond to variation in their larval habitat, and thus control the timing of metamorphosis. Thyroid hormone and corticosteroids act through structurally similar nuclear receptors, and interactions at the transcriptional level could lead to regulation of common pathways controlling metamorphosis. To better understand the roles of corticosteroids in amphibian metamorphosis we analyzed the developmental and hormone-dependent expression of glucocorticoid receptor (GR) mRNA in the brain (diencephalon), intestine and tail of Xenopus laevis tadpoles. We compared the expression patterns of GR with expression of thyroid hormone receptor beta (TRbeta). In an effort to determine the relationship between nuclear hormone receptor expression and levels of ligand, we also analyzed changes in whole-body content of 3,5,3'-triiodothyronine (T(3)), thyroxine, and corticosterone (CORT). GR transcripts of 8, 4 and 2 kb were detected in all tadpole tissues, but only the 4 and 2 kb transcripts could be detected in embryos. The level of GR mRNA was low during premetamorphosis in the brain but increased significantly during prometamorphosis, remained at a constant level throughout metamorphosis, and increased to its highest level in the juvenile frog. GR mRNA level in the intestine remained relatively constant, but increased in the tail throughout metamorphosis, reaching a maximum at metamorphic climax. The level of GR mRNA was increased by treatment with CORT in the intestine but not in the brain or tail. TRbeta mRNA level increased in the brain, intestine and tail during metamorphosis and was induced by treatment with T(3). Analysis of possible crossregulatory relationships between GRs and TRs showed that GR mRNA was upregulated by exogenous T(3) (50 nM) in the tail but downregulated in the brain of premetamorphic tadpoles. Exogenous CORT (100 nM) upregulated TRbeta mRNA in the intestine. Our findings provide evidence for tissue-specific positive, negative and crossregulation of nuclear hormone receptors during metamorphosis of X. laevis. The synergy of CORT with T(3) on tadpole tail resorption may depend on the accelerated accumulation of GR transcripts in this tissue during metamorphosis, which may be driven by rising plasma thyroid hormone titers.

Free access
AF Seasholtz
Search for other papers by AF Seasholtz in
Google Scholar
PubMed
Close
,
RA Valverde
Search for other papers by RA Valverde in
Google Scholar
PubMed
Close
, and
RJ Denver
Search for other papers by RJ Denver in
Google Scholar
PubMed
Close

Corticotropin-releasing hormone (CRH) plays multiple roles in vertebrate species. In mammals, it is the major hypothalamic releasing factor for pituitary adrenocorticotropin secretion, and is a neurotransmitter or neuromodulator at other sites in the central nervous system. In non-mammalian vertebrates, CRH not only acts as a neurotransmitter and hypophysiotropin, it also acts as a potent thyrotropin-releasing factor, allowing CRH to regulate both the adrenal and thyroid axes, especially in development. The recent discovery of a family of CRH-like peptides suggests that multiple CRH-like ligands may play important roles in these functions. The biological effects of CRH and the other CRH-like ligands are mediated and modulated not only by CRH receptors, but also via a highly conserved CRH-binding protein (CRH-BP). The CRH-BP has been identified not only in mammals, but also in non-mammalian vertebrates including fishes, amphibians, and birds, suggesting that it is a phylogenetically ancient protein with extensive structural and functional conservation. In this review, we discuss the biochemical properties of the characterized CRH-BPs and the functional roles of the CRH-BP. While much of the in vitro and in vivo data to date support an 'inhibitory' role for the CRH-BP in which it binds CRH and other CRH-like ligands and prevents the activation of CRH receptors, the possibility that the CRH-BP may also exhibit diverse extra- and intracellular roles in a cell-specific fashion and at specific times in development is also discussed.

Free access