Search Results
You are looking at 1 - 2 of 2 items for
- Author: RJ Scaramuzzi x
- Refine by access: All content x
Search for other papers by BK Campbell in
Google Scholar
PubMed
Search for other papers by H Dobson in
Google Scholar
PubMed
Search for other papers by RJ Scaramuzzi in
Google Scholar
PubMed
This study examined the effect of LH pulses, of similar amplitude and frequency to those found in the luteal phase, on the pattern of hormone secretion and follicle development in GnRH antagonist-suppressed ewes stimulated with exogenous FSH. This experiment was conducted on ewes with ovarian autotransplants in a continuous study. Follicle development was suppressed in 18 ewes by 3 weeks of GnRH antagonist treatment (50 micrograms/kg per 4 days s.c.), and was then stimulated by infusion of ovine (o)FSH (5 micrograms NIADDK-oFSH-16/h i.v.) for 3 days. In addition to FSH, 10 animals received pulses of LH (2.5 micrograms NIADDK-oLH-26 i.v.) every 4 h for the entire period of the FSH infusion. The follicle population was determined by daily ultrasound. Samples of ovarian and jugular venous blood were collected at 4-h intervals over the period of the FSH infusion and there were three periods of intensive blood sampling (15-min intervals for 2.5 h at 24, 48 and 72 h after the start of the FSH infusion) when the steroidogenic capacity of the follicles in all 18 ewes was tested around an LH challenge (2.5 micrograms i.v.). GnRH antagonist treatment resulted in a 57% decrease in FSH concentrations and prevented ovarian follicle development beyond 3 mm in diameter. Infusion of FSH resulted in a 60% increase in FSH concentrations and stimulated the development of large antral follicles and a coincident increase in ovarian androstenedione, inhibin and oestradiol secretion in both experimental groups. In the absence of 4-hourly LH pulses basal steroid secretion was negligible (< 1 ng/min; P < 0.001). Daily LH challenges, however, revealed no difference in the steroidogenic capacity of the follicle population in either experimental group. Similarly, LH pulses had no effect on the growth rate and number of antral follicles stimulated by FSH infusion, or the pattern of ovarian inhibin secretion. In conclusion, these results show that while FSH alone can stimulate the development of ovulatory sized follicles in ewes made hypogonadal with GnRH antagonist, physiological patterns of LH stimulation have no deleterious effects on FSH-stimulated follicle development and are essential for normal steroidogenesis.
Search for other papers by JA Downing in
Google Scholar
PubMed
Search for other papers by J Joss in
Google Scholar
PubMed
Search for other papers by RJ Scaramuzzi in
Google Scholar
PubMed
Improving ewe nutrition even for short periods will increase ovulation rate. The increased nutrients must in some way affect the number of follicles that develop to the pre-ovulatory stage. One possible mechanism is that a nutrient or a metabolic hormone that responds to nutrition might act directly on the ovary to influence follicle development and/or follicle selection. In the study described here, insulin and glucose, alone or together, were infused directly into the ovarian artery of ewes with an autotransplanted ovary, for 13.5 h on day 11 of the oestrous cycle. The pattern of androstenedione and oestradiol secretion in response to a GnRH-stimulated LH pulse was measured 2.5 h before and 12.5 h and 24.5 h after the start of the infusion. Glucose or insulin infused alone had no effect on the secretion of androstenedione and oestradiol. However, when infused together, they decreased significantly the secretion of androstenedione and, to a lesser extent, oestradiol. We suggest that the sudden availability of additional glucose and insulin increases insulin-stimulated glucose uptake by the follicle. This leads to an inhibition of LH-stimulated steroidogenesis by the ovarian follicle which occurs in the absence of any detectable changes in circulating plasma concentrations of FSH. These results show that insulin and glucose act together to influence ovarian function directly and suggest that the effects of short-term nutrition on ovulation rate may be mediated by a direct ovarian action of insulin and glucose.