Search Results

You are looking at 1 - 3 of 3 items for

  • Author: RP Deis x
Clear All Modify Search
Restricted access

M Soaje and RP Deis

We have recently demonstrated the existence of a neuromodulatory regulation of prolactin secretion by the opioid system showing a paradoxical opioid-induced prolactin suppression at the end of pregnancy. The aim of this study was to determine a possible interaction between the opioid system and ovarian hormones on the release of prolactin during pregnancy. Serum prolactin levels measured at 1800 h were significantly higher on days 3 and 6 of pregnancy when compared with the other days of gestation. These increases in serum prolactin were reduced significantly by naloxone (2 mg/kg) administered at 1730 h and by RU-486 (10 mg/kg) administered at 0800 h. The response induced by RU-486 was potentiated by naloxone only on day 3. On days 7, 13 and 16, prolactin secretion was not modified by RU-486 and/or naloxone treatment. In RU-486 pretreated rats, naloxone administration increased serum prolactin levels only on day 16 of pregnancy. Interestingly, progesterone treatment (0.5 mg/rat) on days 13, 14 and 15 of pregnancy prevented the high increase in serum prolactin induced by RU-486 and naloxone on day 16 of pregnancy. The progressive increase and decrease of serum progesterone concentration during pregnancy was not modified by naloxone treatment. The participation of oestrogen in the regulation of prolactin secretion by the opioid system on days 3, 16 and 19 was examined by treating these groups of rats with oestradiol benzoate or tamoxifen citrate. Oestradiol (2 micrograms/rat) significantly increased serum prolactin levels on day 3 and naloxone administration did not modify this increase. No effect was observed after oestradiol (5 micrograms/rat) and naloxone treatment on days 16 and 19 of pregnancy. Oral administration of tamoxifen (500 micrograms/kg) the previous day did not modify the serum prolactin concentration measured at 1800 h in oil-treated rats on days 3, 16 and 19 of pregnancy. The antioestrogen completely abolished the naloxone-induced prolactin secretion on day 16 in rats pretreated with RU-486 but no effect was observed on day 19. When tamoxifen was administered on days 14 and 15 of pregnancy, the high serum prolactin levels on day 19 induced by treatment with RU-486 and naloxone were significantly reduced. In conclusion, these results provide an important new insight into the existence of a dual neuromodulatory regulation of prolactin secretion by the opioid system during pregnancy. After a stimulatory action during the first days, there is a change to an inhibitory control at the end of pregnancy, starting around day 16. Moreover, the activation of the inhibitory modulation of the opioid system on prolactin secretion on days 16 and 19 of pregnancy seems to be mediated by changes in the oestrogen and progesterone action.

Free access

CO Stocco and RP Deis

We examined the participation of the intraluteal levels of progesterone (P4) and prostaglandin F2 alpha (PGF2 alpha) in the induction of luteolysis by LH and its relationship with the induction of the 20 alpha-hydroxysteroid dehydrogenase activity (20 alpha-HSD). Subcutaneous administration of four doses of 10 microgram ovine LH (oLH) at 0800, 0900, 1000 and 1100 h on day 19 of pregnancy induced a decrease in the activity of the enzyme 3 beta-HSD 24 and 48 h after treatment and an increase in luteal 20 alpha-HSD activity 48 h after oLH treatment when compared with control rats. Intraluteal and serum P4 levels were lower than control values 24 and 48 h after oLH treatment, with a significant increase in luteal PGF2 alpha content and a decrease in corpus luteum (CL) weight 48 h after oLH treatment. Intrabursal ovarian (i.b.) treatment with an inhibitor of PG's biosynthesis (diclofenac) (70 microgram/ovary) or P4 (3 microgram/ovary) on day 20 of pregnancy, prevented the increase in 20 alpha-HSD activity observed 48 h after oLH treatment, without any effect on 3 beta-HSD activity. The i.b. administration of P4 prevented the increase in intraluteal PGF2 alpha content induced by oLH treatment and the increases in 20 alpha-HSD activity and intraluteal PGF2 alpha content observed in control animals on day 21 of pregnancy. The inhibition of PG biosynthesis also prevents the decrease in intraluteal and serum P4 level induced by oLH. These results provide good evidence of the important participation of intraluteal P4 and PGF2 alpha on the oLH-induced luteolysis in pregnant rats. We also found the P4 produced by the CL is involved, in part, in the regulation of luteal PG synthesis. Thus, the early decline in 3 beta-HSD activity and the consequent fall in intraluteal P4 content, may trigger the synthesis of PGs and thereafter the increase in luteal 20 alpha-HSD activity to establish luteolysis.

Free access

M Soaje, EG de Di Nasso and RP Deis

Evidence suggests that endogenous opioid peptides are implicated in the suckling-induced prolactin rise. We explored the role of the opioid system and the participation of ovarian hormones in the regulation of prolactin induced by the suckling stimulus at the end of pregnancy in rats with developed maternal behavior, and during lactation. Suckling for 24 h induced a significant increase in serum prolactin on day 19 of pregnancy, which was increased more than three times when naloxone (2 mg/kg s.c.) or mifepristone (2 mg/kg) was administered. The combination of naloxone and mifepristone did not increase serum prolactin more than either compound alone. Administration of tamoxifen (500 microg/kg orally) on days 14 and 15 of pregnancy completely abolished the effect of naloxone, indicating a role for estrogens in establishing this inhibitory role of opioids. To examine the participation of the opioid system during lactation, we used groups of rats on days 1, 3, 5, 12 and 19 postpartum either (i) isolated from the pups for 4 h, or (ii) isolated from the pups for 3.5 h and reunited with them and suckled for 30 min. Naloxone, given just before replacing the pups, prevented the increase in serum prolactin levels observed in the suckled group of rats but had no effect on the basal levels of the isolated rats. To examine whether the participation of the opioid system in the release of prolactin is dependent on the variation of progesterone levels, rats on day 20 of pregnancy were implanted with two cannulae containing progesterone (that blocked postpartum ovulation) or cholesterol, and cesarean surgery was performed on day 21. To maintain lactation, pups (1-3 days old) were replaced every 24 h, and 4 days after the cesarean eight pups were placed in the cage at 1800 h to maintain a strong suckling stimulus during the following 24 h. Naloxone administration significantly reduced serum prolactin levels in control (cholesterol) rats but progesterone implants prevented the inhibitory effect of naloxone and this effect was not modified by treatment with estrogen. These results indicate that the opioid system modulates suckling-induced prolactin secretion, passing from an inhibitory action before delivery to a stimulatory action during lactation. This regulatory shift seems to be dependent on the fall in progesterone concentration at the end of pregnancy and the subsequent increase after the postpartum ovulation and luteal phase.