Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Richard J Sulston x
  • Refine by access: All content x
Clear All Modify Search
Katie J Mylonas University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Katie J Mylonas in
Google Scholar
PubMed
Close
,
Neil A Turner Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK

Search for other papers by Neil A Turner in
Google Scholar
PubMed
Close
,
Sumia A Bageghni Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK

Search for other papers by Sumia A Bageghni in
Google Scholar
PubMed
Close
,
Christopher J Kenyon University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Christopher J Kenyon in
Google Scholar
PubMed
Close
,
Christopher I White University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Christopher I White in
Google Scholar
PubMed
Close
,
Kieran McGregor University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Kieran McGregor in
Google Scholar
PubMed
Close
,
Robert A Kimmitt University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Robert A Kimmitt in
Google Scholar
PubMed
Close
,
Richard Sulston University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Richard Sulston in
Google Scholar
PubMed
Close
,
Valerie Kelly University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Valerie Kelly in
Google Scholar
PubMed
Close
,
Brian R Walker University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Brian R Walker in
Google Scholar
PubMed
Close
,
Karen E Porter Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK

Search for other papers by Karen E Porter in
Google Scholar
PubMed
Close
,
Karen E Chapman University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Karen E Chapman in
Google Scholar
PubMed
Close
, and
Gillian A Gray University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Gillian A Gray in
Google Scholar
PubMed
Close

We have previously demonstrated that neutrophil recruitment to the heart following myocardial infarction (MI) is enhanced in mice lacking 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) that regenerates active glucocorticoid within cells from intrinsically inert metabolites. The present study aimed to identify the mechanism of regulation. In a mouse model of MI, neutrophil mobilization to blood and recruitment to the heart were higher in 11β-HSD1-deficient (Hsd11b1 / ) relative to wild-type (WT) mice, despite similar initial injury and circulating glucocorticoid. In bone marrow chimeric mice, neutrophil mobilization was increased when 11β-HSD1 was absent from host cells, but not when absent from donor bone marrow-derived cells. Consistent with a role for 11β-HSD1 in ‘host’ myocardium, gene expression of a subset of neutrophil chemoattractants, including the chemokines Cxcl2 and Cxcl5, was selectively increased in the myocardium of Hsd11b1 / mice relative to WT. SM22α-Cre directed disruption of Hsd11b1 in smooth muscle and cardiomyocytes had no effect on neutrophil recruitment. Expression of Cxcl2 and Cxcl5 was elevated in fibroblast fractions isolated from hearts of Hsd11b1 / mice post MI and provision of either corticosterone or of the 11β-HSD1 substrate, 11-dehydrocorticosterone, to cultured murine cardiac fibroblasts suppressed IL-1α-induced expression of Cxcl2 and Cxcl5. These data identify suppression of CXCL2 and CXCL5 chemoattractant expression by 11β-HSD1 as a novel mechanism with potential for regulation of neutrophil recruitment to the injured myocardium, and cardiac fibroblasts as a key site for intracellular glucocorticoid regeneration during acute inflammation following myocardial injury.

Open access
Andrea Lovdel University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Andrea Lovdel in
Google Scholar
PubMed
Close
,
Karla J Suchacki University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Karla J Suchacki in
Google Scholar
PubMed
Close
,
Fiona Roberts University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Fiona Roberts in
Google Scholar
PubMed
Close
,
Richard J Sulston University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Richard J Sulston in
Google Scholar
PubMed
Close
,
Robert J Wallace Department of Orthopaedics, The University of Edinburgh, Edinburgh, UK

Search for other papers by Robert J Wallace in
Google Scholar
PubMed
Close
,
Benjamin J Thomas University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Benjamin J Thomas in
Google Scholar
PubMed
Close
,
Rachel M B Bell University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Rachel M B Bell in
Google Scholar
PubMed
Close
,
Iris Pruñonosa Cervera University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Iris Pruñonosa Cervera in
Google Scholar
PubMed
Close
,
Gavin J Macpherson Department of Orthopaedic Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK

Search for other papers by Gavin J Macpherson in
Google Scholar
PubMed
Close
,
Nicholas M Morton University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK

Search for other papers by Nicholas M Morton in
Google Scholar
PubMed
Close
,
Natalie Z M Homer University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Natalie Z M Homer in
Google Scholar
PubMed
Close
,
Karen E Chapman University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by Karen E Chapman in
Google Scholar
PubMed
Close
, and
William P Cawthorn University/BHF Centre for Cardiovascular Science, The University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK

Search for other papers by William P Cawthorn in
Google Scholar
PubMed
Close

Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass in healthy humans. It increases in diverse conditions, including ageing, obesity, osteoporosis, glucocorticoid therapy, and notably, during caloric restriction (CR). BMAT potentially influences skeletal, metabolic, and immune functions, but the mechanisms of BMAT expansion remain poorly understood. Our hypothesis is that, during CR, excessive glucocorticoid activity drives BMAT expansion. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies glucocorticoid activity by catalysing intracellular regeneration of active glucocorticoids from inert 11-keto forms. Mice lacking 11β-HSD1 resist metabolic dysregulation and bone loss during exogenous glucocorticoid excess; thus, we hypothesised that 11β-HSD1 knockout mice would also resist excessive glucocorticoid action during CR, thereby restrining BMAT expansion and bone loss. To test this, we first confirmed that 11β-HSD1 is expressed in mouse and human bone marrow. We then investigated the effects of CR in male and female control and 11β-HSD1 knockout mice from 9 to 15 weeks of age. CR increased Hsd11b1 mRNA in adipose tissue and bone marrow. Deletion of Hsd11b1 did not alter bone or BMAT characteristics in mice fed a control diet and had little effect on tibial bone microarchitecture during CR. Notably, Hsd11b1 deletion attenuated the CR-induced increases in BMAT and prevented increases in bone marrow corticosterone in males but not females. This was not associated with suppression of glucocorticoid target genes in bone marrow. Instead, knockout males had increased progesterone in plasma and bone marrow. Together, our findings show that knockout of 11β-HSD1 prevents CR-induced BMAT expansion in a sex-specific manner and highlights progesterone as a potential new regulator of bone marrow adiposity.

Open access