Search Results
You are looking at 1 - 2 of 2 items for
- Author: Robert C Thompson x
- Refine by access: All content x
Department of Biological Chemistry, University of Michigan, 109 Zina Pitcher Place, BSRB Room 5035, Ann Arbor, Michigan 48109, USA
Search for other papers by Audrey F Seasholtz in
Google Scholar
PubMed
Search for other papers by Miina Öhman in
Google Scholar
PubMed
Search for other papers by Amale Wardani in
Google Scholar
PubMed
Department of Psychiatry, University of Michigan, 109 Zina Pitcher Place, BSRB Room 5035, Ann Arbor, Michigan 48109, USA
Search for other papers by Robert C Thompson in
Google Scholar
PubMed
Corticotropin-releasing hormone (CRH) is a key regulator of the mammalian stress response, mediating a wide variety of stress-associated behaviors including stress-induced inhibition of reproductive function. To investigate the potential direct action of CRH on pituitary gonadotrope function, we examined CRH receptor expression and second messenger signaling in αT3-1 cells, a murine gonadotrope-like cell line. Reverse transcriptase PCR (RT-PCR) studies demonstrated that αT3-1 cells express mRNA for the two CRH receptor subtypes, CRHR1 and CRHR2, with CRHR2α as the predominant CRHR2 isoform. Stimulation of the cells with CRH or urocortin (UCN) resulted in rapid, transient increases in the intracellular levels of cAMP that were completely blocked by the addition of α-helical CRH 9-41 or astressin, non-selective CRH receptor antagonists. Stimulation of the cells with CRHR2-specific ligands, urocortin 2 (UCN2) or urocortin 3 (UCN3), resulted in rapid increases in intracellular cAMP levels to 50–60% of the levels observed with UCN. Treatment with a selective CRHR2 antagonist, antisauvagine, completely blocked UCN3-mediated increases in cAMP and significantly reduced, but did not completely block UCN-mediated increases in cAMP, demonstrating that both CRHR1 and CRHR2 are functionally active in these gonadotrope-like cells. Finally, UCN treatment significantly increased the transcriptional activity of the glycoprotein hormone α-subunit promoter as assessed by α-luciferase transfection assays. Together, these results demonstrate the functional signaling of CRH receptors in αT3-1 cells, suggesting that CRH may also modulate pituitary gonadotrope function in vivo.
Search for other papers by Iain R Thompson in
Google Scholar
PubMed
Search for other papers by Annisa N Chand in
Google Scholar
PubMed
Search for other papers by Kim C Jonas in
Google Scholar
PubMed
Search for other papers by Jacky M Burrin in
Google Scholar
PubMed
Search for other papers by Mark E Steinhelper in
Google Scholar
PubMed
Search for other papers by Caroline P Wheeler-Jones in
Google Scholar
PubMed
Search for other papers by Craig A McArdle in
Google Scholar
PubMed
Endocrine Signalling Group, Barts and the London School of Medicine and Dentistry, Department of Medicine, Cardiovascular and Inflammation Group, Laboratory for Integrated Neurosciences and Endocrinology, Veterinary Basic Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
Endocrine Signalling Group, Barts and the London School of Medicine and Dentistry, Department of Medicine, Cardiovascular and Inflammation Group, Laboratory for Integrated Neurosciences and Endocrinology, Veterinary Basic Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
Search for other papers by Robert C Fowkes in
Google Scholar
PubMed
In the pituitary, C-type natriuretic peptide (CNP) has been implicated as a gonadotroph-specific factor, yet expression of the CNP gene (Nppc) and CNP activity in gonadotrophs is poorly defined. Here, we examine the molecular expression and putative function of a local gonadotroph natriuretic peptide system. Nppc, along with all three natriuretic peptide receptors (Npr1, Npr2 and Npr3), was expressed in both αT3-1 and LβT2 cells and primary mouse pituitary tissue, yet the genes for atrial-(ANP) and B-type natriuretic peptides (Nppa and Nppb) were much less abundant. Putative processing enzymes of CNP were also expressed in αT3-1 cells and primary mouse pituitaries. Transcriptional analyses revealed that the proximal 50 bp of the murine Nppc promoter were sufficient for GNRH responsiveness, in an apparent protein kinase C and calcium-dependent manner. Electrophoretic mobility shift assays showed Sp1/Sp3 proteins form major complexes within this region of the Nppc promoter. CNP protein was detectable in rat anterior pituitaries, and electron microscopy detected CNP immunoreactivity in secretory granules of gonadotroph cells. Pharmacological analyses of natriuretic peptide receptor activity clearly showed ANP and CNP are potent activators of cGMP production. However, functional studies failed to reveal a role for CNP in regulating cell proliferation or LH secretion. Surprisingly, CNP potently stimulated the human glycoprotein hormone α-subunit promoter in LβT2 cells but not in αT3-1 cells. Collectively, these findings support a role for CNP as the major natriuretic peptide of the anterior pituitary, and for gonadotroph cells as the major source of CNP expression and site of action.