Search Results
You are looking at 1 - 2 of 2 items for
- Author: Rong Ju x
- Refine by access: All content x
Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
Search for other papers by Yu Zhou in
Google Scholar
PubMed
Search for other papers by Min Gong in
Google Scholar
PubMed
Search for other papers by Yingfei Lu in
Google Scholar
PubMed
Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
Search for other papers by Jianquan Chen in
Google Scholar
PubMed
Search for other papers by Rong Ju in
Google Scholar
PubMed
Prenatal androgen exposure induces metabolic disorders in female offspring. However, the long-term effect of maternal testosterone excess on glucose metabolism, especially on pancreatic beta-cell function, is rarely investigated. Our current study mainly focused on the effects of prenatal testosterone exposure on glucose metabolism and pancreatic beta- cell function in aged female offspring. By using maternal mice and their female offspring as animal models, we found that prenatal androgen treatment induced obesity and glucose intolerance in aged offspring. These influences were accompanied by decreased fasting serum insulin concentration, elevated serum triglyceride, and testosterone concentrations. Glucose stimulated insulin secretion in pancreatic beta cells of aged female offspring was also affected by prenatal testosterone exposure. We further confirmed that increased serum testosterone contributed to downregulation of sirtuin 3 expression, activated oxidative stress, and impaired pancreatic beta-cell function in aged female offspring. Moreover, over-expression of sirtuin 3 in islets isolated from female offspring treated with prenatal testosterone normalized the oxidative stress level, restored cyclic AMP, and ATP generation, which finally improved glucose-stimulated insulin secretion in beta cells. Taken together, these results demonstrated that prenatal testosterone exposure caused a metabolic disturbance in aged female offspring via suppression of sirtuin 3 expression and activation of oxidative stress in pancreatic beta cells.
Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
Search for other papers by Yu Zhou in
Google Scholar
PubMed
Search for other papers by Chao Lian in
Google Scholar
PubMed
Search for other papers by Yingfei Lu in
Google Scholar
PubMed
Search for other papers by Tianming Wang in
Google Scholar
PubMed
Search for other papers by Chengcheng Zhao in
Google Scholar
PubMed
Search for other papers by Cuilan Zhang in
Google Scholar
PubMed
Search for other papers by Min Gong in
Google Scholar
PubMed
Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
Search for other papers by Jianquan Chen in
Google Scholar
PubMed
Search for other papers by Rong Ju in
Google Scholar
PubMed
Polycystic ovary syndrome (PCOS) is a condition resulting from the interaction between environmental factors and hereditary components, profoundly affecting offspring development. Although the etiology of this disease remains unclear, aberrant in utero androgen exposure is considered one of the pivotal pathogenic factors. Herein, we demonstrate the intergenerational inheritance of PCOS-like phenotypes in F2 female offspring through F1 males caused by maternal testosterone exposure in F0 mice. We found impaired serum hormone expression and reproductive system development in prenatal testosterone-treated F1 male and F2 female mice (PTF1 and PTF2). In addition, downregulated N6-methyladenosine (m6A) methyltransferase and binding proteins induced mRNA hypomethylation in the PTF1 testis, including frizzled-6 (Fzd6). In the PTF2 ovary, decreased FZD6 protein expression inhibited the mammalian target of rapamycin (mTOR) signaling pathway and activated Forkhead box O3 (FoxO3) phosphorylation, which led to impaired follicular development. These data indicate that epigenetic modification of the mTOR signaling pathway could be involved in the intergenerational inheritance of maternal testosterone exposure-induced impairments in the PTF2 ovary through male PTF1 mice.