Search Results

You are looking at 1 - 4 of 4 items for

  • Author: S Hampton x
  • All content x
Clear All Modify Search
Free access

DC Ribeiro, SM Hampton, L Morgan, S Deacon, and J Arendt

The circadian rhythms of most night shift workers do not adapt fully to the imposed behavioural schedule, and this factor is considered to be responsible for many of the reported health problems. One way in which such disturbances might be mediated is through inappropriate hormonal and metabolic responses to meals, on the night shift. Twelve healthy subjects (four males and eight females) were studied on three occasions at the same clock time (1330 h), but at different body clock times, after consuming test meals, first in their normal environment, secondly after a forced 9 h phase advance (body clock time approximately 2230 h) and then again 2 days later in the normal environment. They were given a low-fat pre-meal at 0800 h, then a test meal at 1330 h with blood sampling for the following 9 h. Parameters measured included plasma glucose, non-esterified fatty acids (NEFAs), triacylglycerol (TAG), insulin, C-peptide, proinsulin and glucose-dependent insulinotropic polypeptide, and urinary 6-sulphatoxymelatonin. In contrast with a previous study with a high-fat pre-meal, postprandial glucose and insulin responses were not affected by the phase shift. However, basal plasma NEFAs were lower immediately after the phase shift (P < 0.05). Incremental (difference from basal) TAG responses were significantly higher (P < 0.05) immediately after the phase shift compared with before. Two-day post-phase shift responses showed partial reversion to baseline values. This study suggests that it takes at least 2 days to adapt to eating meals on a simulated night shift, and that the nutritional content of the pre-meals consumed can have a marked effect on postprandial responses during a simulated phase shift. Such findings may provide a partial explanation for the increased occurrence of cardiovascular disease reported in shift workers.

Free access

L Morgan, J Arendt, D Owens, S Folkard, S Hampton, S Deacon, J English, D Ribeiro, and K Taylor

This study was undertaken to determine whether the internal clock contributes to the hormone and metabolic responses following food, in an experiment designed to dissociate internal clock effects from other factors. Nine female subjects participated. They lived indoors for 31 days with normal time cues, including the natural light: darkness cycle. For 7 days they retired to bed from 0000 h to 0800 h. They then underwent a 26-h 'constant routine' (CR) starting at 0800 h, being seated awake in dim light with hourly 88 Kcal drinks. They then lived on an imposed 27-h day (18 h of wakefulness, 9 h allowed for sleep), for a total of 27 days. A second 26-h CR, starting at 2200 h, was completed. During each CR salivary melatonin and plasma glucose, triacylglycerol (TAG), non-essential fatty acids (NEFA), insulin, gastric inhibitory peptide (GIP) and glucagon-like peptide-1 (GLP-1) were measured hourly. Melatonin and body temperature data indicated no shift in the endogenous clock during the 27-h imposed schedule. Postprandial NEFA, GIP and GLP-1 showed no consistent effects. Glucose, TAG and insulin increased during the night in the first CR. There was a significant effect of both the endogenous clock and sleep for glucose and TAG, but not for insulin. These findings may be relevant to the known increased risk of cardiovascular disease amongst shift workers.

Restricted access

S M Hampton, L M Morgan, N Lawrence, T Anastasiadou, F Norris, S Deacon, D Ribeiro, and J Arendt


This study was designed to investigate postprandial responses to a mixed meal in simulated shift work conditions. Nine normal healthy subjects (six males and three females) were studied on two occasions at the same clock time (1330 h) after consuming test meals, first in their normal environment and secondly after a 9 h phase advance (body clock time 2230 h). Plasma glucose, insulin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), triacylglycerol (TAG) and non-esterified fatty acids (NEFAs) were determined at intervals for 6 h after each test meal. Postprandial plasma glucose, insulin, GIP and GLP-1 profiles were evaluated by calculating areas under the curve (AUC) for the first 2 h and the last 4 h of the sampling together with total AUC. Significantly higher postprandial glucose responses (total AUC) were observed after the phase shift than before (AUC 0–360 min, 2·01 (1·51–2·19) vs 1·79 (1·56–2·04) mmol/l.min; P<0·02; mean (range)). No significant difference was observed when the first 2 h of each response was compared, but significantly higher glucose levels were observed in the last 4 h of the study after the phase shift than before (AUC 120–360 min, 1·32 (1·08–1·42) vs 1·16 (1·00–1·28) mmol/l.min; P<0·05). Similar results were obtained for insulin (AUC 0—360 min, 81·72 (30·75– 124·97) vs 58·98 (28·03–92·57) pmol/l.min; P<0·01; AUC 120–360 min, 40·73 (16·20–65·25) vs 25·71 (14·25–37·33) pmol/l.min; P<0·02). No differences were observed in postprandial plasma GIP and GLP-1 responses before and after the phase shift. Postprandial circulating lipid levels were affected by phase shifting. Peak plasma TAG levels occurred 5 h postprandially before the phase shift. Postprandial rises in plasma TAG were significantly delayed after the phase shift and TAG levels continued to rise throughout the study. Plasma postprandial NEFA levels fell during the first 3 h both before and after the phase shift. Their rate of return to basal levels was significantly delayed after the phase shift compared with before. This study demonstrates that a simulated phase shift can significantly alter pancreatic B-cell responses and postprandial glucose and lipid metabolism.

Journal of Endocrinology (1996) 151, 259–267

Free access

Lawrence L Espey, Rebecca A Garcia, Haruhiro Kondo, Bunpei Ishizuka, Shinya Yoshioka, Shingo Fujii, Stephen Hampton, and JoAnne S Richards

This study assesses the relatively high incidence of the expression of paralogs of several pseudogenes within the cascade of expression of functional genes in the rat ovary in response to an ovulation-stimulating dose of gonadotropin. Immature Wistar rats were primed with 10 IU equine chorionic gonadotropin subcutaneously, and 48 h later the 12-h ovulatory process was initiated by 10 IU hCG subcutaneously. Ovarian RNA was extracted at 0, 2, 4, 8, 12, and 24 h after injecting the animals with hCG. The RNA extracts were used for RT-PCR differential display to detect gene expression in the ovarian tissue. Sequence analyses of differentially expressed cDNAs revealed that ∼27% (i.e. 22/82 clones) of the transcripts were fragments of paralogs of known pseudogenes. Out of the 22 clones reported here, 12 have high sequence similarity to the cytochrome P450 pseudogene Cyp21a1-ps, and 5 have high sequence similarity to both the Cyp21a1-ps and the aldo-keto reductase gene Akr1c6. The remaining five clones were paralogs of the endogenous retrovirus SC1 that has heavily infested the rat genome. Northern analyses reveal that peak expression of all the 22 paralogs occurs at 4–8 h into the ovulatory process. In situ hybridization shows that expression of these pseudogenes is primarily in the granulosa layer of ovulatory follicles. In summary, the results reveal that ovarian expression of Cyp21a1-ps- and SC1-like pseudogenes occurs concurrently with the ovulatory process.