Search Results
You are looking at 1 - 4 of 4 items for
- Author: S Lin x
- Refine by access: All content x
Search for other papers by S You in
Google Scholar
PubMed
Search for other papers by W Li in
Google Scholar
PubMed
Search for other papers by T Lin in
Google Scholar
PubMed
Gap junctions are intercellular protein channels which provide a pathway for the exchange of ions and small molecules. This exchange of materials allows metabolic coupling of cells. Gap junction channels are made up of connexins, integral membrane proteins encoded by a multigene family. Rat testes contain mRNAs for at least five different connexins: Cx26, Cx32, Cx33, Cx37 and Cx43. Immunocytochemical studies have shown that Cx43 assembles gap junctions between Leydig cells. The present study investigated the expression and regulation of the Cx43 gene in rat Leydig cells. Purified Leydig cells were obtained from 40- to 80-day-old Sprague-Dawley rats using a combination of arterial perfusion, collagenase digestion, centrifugal elutriation and Percoll gradient centrifugation. Leydig cells from 20- and 30-day-old rats were isolated without arterial perfusion or centrifugal elutriation. Cx43 mRNA was present in 20-day-old rat Leydig cells, reached a plateau at day 40, and remained at high levels in 65- and 80-day-old rat Leydig cells. To evaluate the regulation of Cx43 gene expression, Leydig cells were cultured overnight and then treated with human chorionic gonadotropin (hCG) for variable periods of time. Addition of hCG (10 ng/ml) increased cytochrome P450 side-chain cleavage and steroidogenic acute regulatory protein mRNA levels and testosterone formation. However, Cx43 mRNA levels were inhibited by hCG in a time- and dose-dependent manner. Cx43 mRNA levels decreased 27% as early as 2 h after the addition of hCG and decreased 60% by 24 h. Treatment of Leydig cells with 8-bromo-cAMP (0.1 mM) for 6 and 24 h also reduced Cx43 mRNA levels by 36 and 56% respectively. Primary cultured Leydig cells stained strongly positive with anti-Cx43 monoclonal antibody. Treatment with hCG for 24 h reduced Cx43 signals and caused Cx43 to redistribute to the periphery of the cells. To evaluate the regulation of Cx43 in vivo, rats were treated with hCG (300 ng i.p.) and testes were removed 24 h later. Frozen section of testes revealed that these interstitial cells stained positive for 3beta-hydroxysteroid dehydrogenase (3beta-HSD) by histochemical staining and were positive for Cx43 by immunofluorescence staining. The adjacent seminiferous tubules stained only weakly positive for Cx43. Twenty-four hours after hCG treatment, 3beta-HSD activity increased while Cx43 immunostaining of Leydig cells was reduced. In conclusion, gap junction channels of Leydig cells are regulated by hCG both in vivo and in vitro. hCG increased Leydig cell steroidogenesis and steroidogenic enzyme mRNA levels but caused a redistribution of Cx43.
Search for other papers by F Labrie in
Google Scholar
PubMed
Search for other papers by V Luu-The in
Google Scholar
PubMed
Search for other papers by A Bélanger in
Google Scholar
PubMed
Search for other papers by S-X Lin in
Google Scholar
PubMed
Search for other papers by J Simard in
Google Scholar
PubMed
Search for other papers by G Pelletier in
Google Scholar
PubMed
Search for other papers by C Labrie in
Google Scholar
PubMed
Dehydroepiandrosterone (DHEA) is not a hormone but it is a very important prohormone secreted in large amounts by the adrenals in humans and other primates, but not in lower species. It is secreted in larger quantities than cortisol and is present in the blood at concentrations only second to cholesterol. All the enzymes required to transform DHEA into androgens and/or estrogens are expressed in a cell-specific manner in a large series of peripheral target tissues, thus permitting all androgen-sensitive and estrogen-sensitive tissues to make locally and control the intracellular levels of sex steroids according to local needs. This new field of endocrinology has been called intracrinology. In women, after menopause, all estrogens and almost all androgens are made locally in peripheral tissues from DHEA which indirectly exerts effects, among others, on bone formation, adiposity, muscle, insulin and glucose metabolism, skin, libido and well-being. In men, where the secretion of androgens by the testicles continues for life, the contribution of DHEA to androgens has been best evaluated in the prostate where about 50% of androgens are made locally from DHEA. Such knowledge has led to the development of combined androgen blockade (CAB), a treatment which adds a pure anti-androgen to medical (GnRH agonist) or surgical castration in order to block the access of the androgens made locally to the androgen receptor. In fact, CAB has been the first treatment demonstrated to prolong life in advanced prostate cancer while recent data indicate that it can permit long-term control and probably cure in at least 90% of cases of localized prostate cancer. The new field of intracrinology or local formation of sex steroids from DHEA in target tissues has permitted major advances in the treatment of the two most frequent cancers, namely breast and prostate cancer, while its potential use as a physiological HRT could well provide a physiological balance of androgens and estrogens, thus offering exciting possibilities for women’s health at menopause.
Search for other papers by B T Layden in
Google Scholar
PubMed
Search for other papers by V Durai in
Google Scholar
PubMed
Search for other papers by M V Newman in
Google Scholar
PubMed
Search for other papers by A M Marinelarena in
Google Scholar
PubMed
Search for other papers by C W Ahn in
Google Scholar
PubMed
Search for other papers by G Feng in
Google Scholar
PubMed
Search for other papers by S Lin in
Google Scholar
PubMed
Search for other papers by X Zhang in
Google Scholar
PubMed
Search for other papers by D B Kaufman in
Google Scholar
PubMed
Search for other papers by N Jafari in
Google Scholar
PubMed
Search for other papers by G L Sørensen in
Google Scholar
PubMed
Search for other papers by W L Lowe Jr in
Google Scholar
PubMed
Pancreatic β cells adapt to pregnancy-induced insulin resistance by unclear mechanisms. This study sought to identify genes involved in β cell adaptation during pregnancy. To examine changes in global RNA expression during pregnancy, murine islets were isolated at a time point of increased β cell proliferation (E13.5), and RNA levels were determined by two different assays (global gene expression array and G-protein-coupled receptor (GPCR) array). Follow-up studies confirmed the findings for select genes. Differential expression of 110 genes was identified and follow-up studies confirmed the changes in select genes at both the RNA and protein level. Surfactant protein D (SP-D) mRNA and protein levels exhibited large increases, which were confirmed in murine islets. Cytokine-induced expression of SP-D in islets was also demonstrated, suggesting a possible role as an anti-inflammatory molecule. Complementing these studies, an expression array was performed to define pregnancy-induced changes in expression of GPCRs that are known to impact islet cell function and proliferation. This assay, the results of which were confirmed using real-time reverse transcription-PCR assays, demonstrated that free fatty acid receptor 2 and cholecystokinin receptor A mRNA levels were increased at E13.5. This study has identified multiple novel targets that may be important for the adaptation of islets to pregnancy.
Adelaide Medical School, The University of Adelaide, Adelaide, Australia
Search for other papers by Harleen Kaur in
Google Scholar
PubMed
Nutrition and Health Program, Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Adelaide, Australia
Search for other papers by Beverly S Muhlhausler in
Google Scholar
PubMed
Search for other papers by Pamela Su-Lin Sim in
Google Scholar
PubMed
Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
Search for other papers by Amanda J Page in
Google Scholar
PubMed
Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
Search for other papers by Hui Li in
Google Scholar
PubMed
Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
Search for other papers by Maria Nunez-Salces in
Google Scholar
PubMed
Adelaide Medical School, The University of Adelaide, Adelaide, Australia
Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
Search for other papers by Georgia S Clarke in
Google Scholar
PubMed
Search for other papers by Lili Huang in
Google Scholar
PubMed
Adelaide Medical School, The University of Adelaide, Adelaide, Australia
Search for other papers by Rebecca L Wilson in
Google Scholar
PubMed
Search for other papers by Johannes D Veldhuis in
Google Scholar
PubMed
Search for other papers by Chen Chen in
Google Scholar
PubMed
Adelaide Medical School, The University of Adelaide, Adelaide, Australia
Search for other papers by Claire T Roberts in
Google Scholar
PubMed
Adelaide Medical School, The University of Adelaide, Adelaide, Australia
Search for other papers by Kathryn L Gatford in
Google Scholar
PubMed
Circulating growth hormone (GH) concentrations increase during pregnancy in mice and remain pituitary-derived. Whether abundance or activation of the GH secretagogue ghrelin increase during pregnancy, or in response to dietary octanoic acid supplementation, is unclear. We therefore measured circulating GH profiles in late pregnant C57BL/6J mice and in aged-matched non-pregnant females fed with standard laboratory chow supplemented with 5% octanoic or palmitic (control) acid (n = 4–13/group). Serum total and acyl-ghrelin concentrations, stomach and placenta ghrelin mRNA and protein expression, Pcsk1 (encoding prohormone convertase 1/3) and Mboat4 (membrane bound O-acyl transferase 4) mRNA were determined at zeitgeber (ZT) 13 and ZT23. Total and basal GH secretion were higher in late pregnant than non-pregnant mice (P < 0.001), regardless of diet. At ZT13, serum concentrations of total ghrelin (P = 0.004), but not acyl-ghrelin, and the density of ghrelin-positive cells in the gastric antrum (P = 0.019) were higher, and gastric Mboat4 and Pcsk1 mRNA expression were lower in pregnant than non-pregnant mice at ZT23. In the placenta, ghrelin protein was localised mostly to labyrinthine trophoblast cells. Serum acyl-, but not total, ghrelin was lower at mid-pregnancy than in non-pregnant mice, but not different at early or late pregnancy. In conclusion, dietary supplementation with 5% octanoic acid did not increase activation of ghrelin in female mice. Our results further suggest that increases in maternal GH secretion throughout murine pregnancy are not due to circulating acyl-ghrelin acting at the pituitary. Nevertheless, time-dependent increased circulating total ghrelin could potentially increase ghrelin action in tissues that express the acylating enzyme and receptor.