Search Results

You are looking at 1 - 4 of 4 items for

  • Author: S M Rhind x
Clear All Modify Search
Restricted access

S. M. Rhind, S. McMillen, W. A. C. McKelvey, F. F. Rodriguez-Herrejon and A. S. McNeilly

ABSTRACT

The effects of body fat content (body condition) of ewes on hypothalamic activity and gonadotrophin-releasing hormone (GnRH) secretion and on pituitary sensitivity to GnRH were investigated using Scottish Blackface ewes. Two groups of 12 ewes were fed so that they achieved either a high body condition score (2·98, s.e.m. = 0·046; approximately 27% of empty body weight as fat) or a low body condition score (1·94, s.e.m. = 0·031; approximately 19% of empty body weight as fat) by 4 weeks before the period of study. Thereafter, they were differentially fed so that the difference in mean condition score was maintained. Oestrus was synchronized, and on day 11 of the subsequent cycle half of the ewes of each group were ovariectomized. On day 12, the remaining ewes were injected (i.m.) with 100 μg prostaglandin F analogue and ovariectomized 30 h later. Numbers of large ovarian follicles and corpora lutea present at ovariectomy were recorded. Blood samples were collected at 15-min intervals for 12 h on day 10 of the cycle (luteal phase) and at 10-min intervals from 24 to 30 h after prostaglandin injection (follicular phase). At days 2 and 7 after ovariectomy, samples were collected at 15-min intervals for 8 h and ewes were then injected with 10 μg GnRH and samples were collected for a further 3 h. Samples were assayed for LH and FSH. Ewes in high body condition had more more large follicles than ewes in low body condition during the luteal phase (15·3 vs 6·5; P < 0·05) and follicular phase (11·5 vs 7·0; NS) and a slightly higher mean ovulation rate (1·50 vs 1·20; NS). However, during the luteal and follicular phases of the cycle before ovariectomy there was no effect of condition score on mean LH or FSH concentrations or mean LH pulse frequency or pulse amplitude. Two days after ovariectomy, ewes of high body condition had a higher mean LH pulse frequency than ewes of low body condition (P < 0·05) and higher mean FSH concentrations (P < 0·05). Mean LH concentration and pulse amplitude were not affected. LH and FSH profiles were not affected by body condition on day 7. GnRH-induced increases in LH and FSH concentrations on days 2 and 7 were not affected by body condition. At day 7, but not day 2, ewes ovariectomized during the luteal phase of the cycle had a significantly (P < 0·05) greater GnRH-induced LH release compared with ewes ovariectomized during the follicular phase. It is concluded that body condition directly affects hypothalamic activity and GnRH secretion, but not pituitary sensitivity to GnRH, and that effects on reproductive performance are also mediated through changes in ovarian hormones or in hypothalamo-pituitary sensitivity to ovarian hormones.

Journal of Endocrinology (1989) 120, 497–502

Restricted access

S. M. Rhind, G. B. Martin, S. McMillen, C. G. Tsonis and A. S. McNeilly

ABSTRACT

The effect of level of food intake on LH and FSH profiles and pituitary sensitivity to gonadotrophin-releasing hormone (GnRH) was investigated in two groups of 12 ovariectomized ewes. Ewes with a high intake (group H) had a mean daily intake (± s.e.m.) of 1·99 ± 0·075 kg dry matter (DM)/head per day while ewes with a moderate intake (group M) consumed a mean of 1·02 ± 0·021 kg DM/head per day. Ovaries were surgically removed from six ewes of each group on day 11 of the luteal phase and from the remainder 30 h after an injection of 100 μg prostaglandin analogue given on day 11 to induce luteolysis. During both the luteal phase and the follicular phase, mean LH and FSH concentrations and LH pulse frequencies and amplitudes were unaffected by the level of intake but mean plasma prolactin concentrations were higher (P < 0·05) in group H than in group M ewes in the follicular phase. Mean LH and FSH concentrations at day 2 after ovariectomy were unaffected by treatment while mean prolactin concentrations were higher (P < 0·05) in group H than in group M ewes. At day 7 after ovariectomy, mean LH and FSH concentrations were lower (P < 0·05) in group H than in group M ewes although mean LH pulse frequencies and pulse amplitudes were not significantly affected by the level of intake at either time.

The level of food intake and the stage of the oestrous cycle at the time of ovariectomy did not affect the amount of LH released in response to a bolus injection of GnRH (10 μg, i.v.) but the FSH response was significantly (P < 0·05) greater in group M than in group H ewes.

It is concluded that the pituitary glands of ovariectomized ewes with moderate levels of intake are more responsive to GnRH than those of ewes with a high intake and that hypothalamic activity and GnRH secretion are not affected by the level of food intake.

Journal of Endocrinology (1989) 121, 325–330

Free access

Z A Archer, S M Rhind, P A Findlay, C E Kyle, M C Barber and C L Adam

Nutritional feedback provided by systemic hormones, such as insulin and leptin, influences reproductive neuroendocrine output within the hypothalamus, yet the mechanisms and their interaction with photoperiodic cues remain unresolved in seasonal species. Here, peripheral glucose (G) infusion was used to increase endogenous concentrations of insulin and leptin in food-restricted sheep kept in either long-day (LD) or short-day (SD) photoperiod, and responses were examined in terms of pulsatile luteinising hormone (LH) (gonadotrophin-releasing hormone by inference) output and hypothalamic gene expression for nutritionally sensitive neuropeptides and receptors. We addressed the hypothesis that these hypothalamic responses were correlated and influenced by photoperiod. Oestradiol-implanted, castrated male sheep were kept 16 weeks in SD (8 h light/day) or LD (16 h light/day) and then transferred to the opposite photoperiods for 8 weeks, during which food was restricted to 90% requirement to maintain body weight (maintenance). For the final 6 days, food was reduced to 75% maintenance, and sheep in both photoperiods were infused intravenously with G (60 mM/h) or saline (S) (n=8/group). G-infused sheep had higher mean plasma concentrations of G, insulin and leptin than S-infused sheep, with no effect of photoperiod. In LD, but not in SD, G infusion increased LH pulse frequency and pulse amplitude. In LD, but not in SD, gene expression in the hypothalamic arcuate nucleus was lower in G- than S-infused sheep for neuropeptide Y (NPY) and agouti-related peptide (AGRP) and was higher in G- than S-infused sheep for pro-opiomelanocortin (POMC). Gene expression for leptin and insulin receptors was not affected by photoperiod or infusion. These results are consistent with the involvement of NPY, AGRP and POMC in mediating the reproductive neuroendocrine response to increased systemic nutritional feedback, and they support the hypothesis that hypothalamic responses to nutritional feedback are influenced by photoperiod in sheep.

Free access

M A Hyatt, G S Gopalakrishnan, J Bispham, S Gentili, I C McMillen, S M Rhind, M T Rae, C E Kyle, A N Brooks, C Jones, H Budge, D Walker, T Stephenson and M E Symonds

The liver is a major metabolic and endocrine organ of critical importance in the regulation of growth and metabolism. Its function is determined by a complex interaction of nutritionally regulated counter-regulatory hormones. The extent to which hepatic endocrine sensitivity can be programed in utero and whether the resultant adaptations persist into adulthood is unknown and was therefore the subject of this study. Young adult male sheep born to mothers that were fed either a control diet (i.e.100% of total live weight-maintenance requirements) throughout gestation or 50% of that intake (i.e. nutrient restricted (NR)) from 0 to 95 days gestation and thereafter 100% of requirements (taking into account increasing fetal mass) were entered into the study. All mothers gave birth normally at term, the singleton offspring were weaned at 16 weeks, and then reared at pasture until 3 years of age when their livers were sampled. NR offspring were of similar birth and body weights at 3 years of age when they had disproportionately smaller livers than controls. The abundance of mRNA for GH, prolactin, and IGF-II receptors, plus hepatocyte growth factor and suppressor of cytokine signaling-3 were all lower in livers of NR offspring. In contrast, the abundance of the mitochondrial protein voltage-dependent anion channel and the pro-apoptotic factor Bax were up regulated relative to controls. In conclusion, maternal nutrient restriction in early gestation results in adult offspring with smaller livers. This may be mediated by alterations in both hepatic mitogenic and apoptotic factors.