Search Results

You are looking at 1 - 4 of 4 items for

  • Author: S Moriyama x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

C. Duan, T. Noso, S. Moriyama, H. Kawauchi, and T. Hirano

ABSTRACT

Our previous studies have shown that mammalian and salmon insulins stimulate sulphate uptake by cultured eel cartilage, suggesting the possible involvement of insulin in the regulation of cartilage matrix synthesis. In the present study, homologous eel insulin was isolated and characterized, and its effects on cartilage matrix synthesis and DNA synthesis were examined in vitro. Insulin was extracted from eel pancreas with acid–ethanol, and subsequently purified by isoelectric precipitation at pH 5·3, gel filtration on Sephadex G-50, and reversed-phase high-performance liquid chromatography. The amino acid composition and complete sequence (50 residues) of eel insulin revealed high homology to teleostean and mammalian insulins. The isolated eel insulin produced a more pronounced and longer lasting hypoglycaemic effect than bovine insulin in the eel. Homologous eel insulin, like bovine insulin-like growth factor (IGF-I) and insulin, stimulated sulphate uptake by cultured eel cartilage in a dose-dependent manner (16–1000 ng/ml). Combination experiments using maximal concentrations of bovine IGF-I (250 ng/ml) and increasing amounts of eel insulin (10–250 ng/ml) showed no additive effects of insulin on sulphate uptake, suggesting that insulin and IGF-I may share a common mechanism(s) of action. Eel insulin and bovine IGF-I also enhanced thymidine incorporation by eel cartilage in a dose-dependent manner (4–1000 ng/ml); eel insulin was equipotent with bovine IGF-I. These results suggest that insulin, like IGF-I, may exert direct growth-promoting actions in branchial cartilage of the eel.

Journal of Endocrinology (1992) 133, 221–230

Free access

S Kajimura, T Hirano, N Visitacion, S Moriyama, K Aida, and EG Grau

Glucocorticoids are known to impede somatic growth in a wide range of vertebrates. In order to clarify the mechanisms through which they may act in an advanced teleost fish, we examined the effects of cortisol administration on the growth hormone (GH)/insulin-like growth factor-I (IGF-I)/IGF-binding protein (IGFBP) system in the tilapia (Oreochromis mossambicus). In a short-term experiment, fish were injected intraperitoneally with cortisol (2 or 10 microg/g), and killed at 2, 4, 8 and 24 h after the injection. In a longer-term experiment, fish were killed 24 and 48 h after cortisol injection (2, 10 and 50 microg/g). Cortisol at doses of 2 and 10 microg/g significantly increased IGFBPs of four different sizes (24, 28, 30, and 32 kDa) in the plasma within 2 h without altering plasma levels of IGF-I or GH. On the other hand, cortisol at doses of 10 and 50 microg/g significantly reduced plasma IGF-I levels after 24 and 48 h. IGF-I mRNA levels in the liver were also significantly reduced by cortisol at doses of 10 and 50 microg/g after 48 h, suggesting that a decrease in plasma IGF-I levels is mediated through the attenuation of IGF-I gene expression in the liver. In contrast, no significant change was observed in plasma or pituitary contents of GH at any time point examined, which would appear to indicate that cortisol reduces IGF sensitivity to GH (GH-resistance). These results clearly indicate that cortisol induces a rapid increase in plasma IGFBPs and a more delayed decrease in IGF-I production. The dual mode of cortisol action may contribute to the inhibitory influence of cortisol on somatic growth in teleosts.

Free access

T Usui, Y Ikeda, T Tagami, K Matsuda, K Moriyama, K Yamada, H Kuzuya, S Kohno, and A Shimatsu

Some plant compounds or herb mixtures are popular alternatives to conventional therapies and contain organic compounds that bind to some nuclear receptors, such as the estrogen receptor (ER), to exert various biological effects. We studied the effect of various herbal extracts on ERalpha and ERbeta isoforms. One herbal extract, Rhei rhizoma (rhubarb), acts as an agonist to both ERalpha and ERbeta. The phytochemical lindleyin, a major component of rhubarb, might contribute to this estrogenic activity through ERalpha and ERbeta. 4-Hydroxytamoxifen, an ER antagonist, completely reversed the estrogenic activity of lindleyin. Lindleyin binds to ERalpha in vitro, as demonstrated using a fluorescent polarization assay. The in vivo effect of rhubarb extract was studied using a vitellogenin assay system in the freshwater fish, Japanese medaka (Oryzias latipes). There were marked increases in serum vitellogenin levels in male medaka exposed to rhubarb extract. We conclude that lindleyin, a component of some herbal medicines, is a novel phytoestrogen and might trigger many of the biological responses evoked by the physiological estrogens.

Free access

N Konno-Takahashi, T Takeuchi, T Shimizu, H Nishimatsu, H Fukuhara, T Kamijo, N Moriyama, S Tejima, and T Kitamura

IGF-I has been implicated as a factor that may predispose one to prostate cancer and to benign prostatic hypertrophy (BPH). We established murine IGF-I transgenic mice under the control of rat probasin promoter and analysed the histology of the murine IGF-I-overexpressing prostate. Immunohistochemically, IGF-I was expressed in prostatic epithelial cells or basement membranes of the ventral, dorsal and lateral lobes in a line of IGF-I transgenic mice, but not in their control littermates. The anterior lobe did not express IGF-I. IGF-binding protein-3 (IGFBP-3), inhibitory to the mitogenic action of IGF-I, was detected in epithelial cells of prostatic ventral lobes, but not in those of the dorsal, lateral or anterior lobes of IGF-I transgenic mice. In controls, IGFBP-3 was not detected in epithelial cells of any prostatic lobe. Macroscopic prostatic size and the appearance of IGF-I transgenic mice were comparable with those of their control littermates of the same age. With a computed morphometric analysis, epithelial glands and intraglandular lumens in the prostatic lobes except the ventral lobe were smaller at 17 Months of age than at 14 Months both in IGF-I transgenic mice and controls. Glands and intraglandular lumens in the ventral prostatic lobes of IGF-I transgenic mice expressing more IGF-I protein in the prostate than controls were dense and enlarged similar to cysts compared with those of non-transgenic littermates without showing epithelial growth. Glands and lumens in the dorsal and lateral lobes of the IGF-I transgenic mice were also larger than controls at 14 and/or 17 Months of age. Glands in the anterior prostatic lobe of the IGF-I transgenic mice were not morphologically or morphometrically different from those of non-transgenic littermates. In conclusion, IGF-I transgenic mice under the control of rat probasin promoter showed more dense and enlarged epithelial glands in their prostatic ventral, dorsal and lateral lobes.