Search Results

You are looking at 1 - 3 of 3 items for

  • Author: S Windahl x
  • Refine by access: All content x
Clear All Modify Search
MK Lindberg
Search for other papers by MK Lindberg in
Google Scholar
PubMed
Close
,
M Erlandsson
Search for other papers by M Erlandsson in
Google Scholar
PubMed
Close
,
SL Alatalo
Search for other papers by SL Alatalo in
Google Scholar
PubMed
Close
,
S Windahl
Search for other papers by S Windahl in
Google Scholar
PubMed
Close
,
G Andersson
Search for other papers by G Andersson in
Google Scholar
PubMed
Close
,
JM Halleen
Search for other papers by JM Halleen in
Google Scholar
PubMed
Close
,
H Carlsten
Search for other papers by H Carlsten in
Google Scholar
PubMed
Close
,
JA Gustafsson
Search for other papers by JA Gustafsson in
Google Scholar
PubMed
Close
, and
C Ohlsson
Search for other papers by C Ohlsson in
Google Scholar
PubMed
Close

Estrogens are important for the male skeleton. Osteoprotegerin (OPG), receptor activator of NF-kappa B ligand (RANKL), interleukin-6 (IL-6), IL-1 and tumor necrosis factor alpha (TNFalpha) have been suggested to be involved in the skeletal effects of estrogen. We treated orchidectomized mice with estradiol for 2 weeks and observed a 143% increase in the trabecular bone mineral density of the distal metaphysis of femur that was associated with a decreased OPG/RANKL mRNA ratio in vertebral bone. A similar decreased OPG/RANKL ratio was also seen after estrogen treatment of ovariectomized female mice. The effect of estrogen receptor (ER) inactivation on the OPG/RANKL ratio was dissected by using intact male mice lacking ER alpha (ERKO), ER beta (BERKO) or both receptors (DERKO). The expression of OPG was increased in ERKO and DERKO but not in BERKO male mice, resulting in an increased OPG/RANKL ratio. Furthermore, serum levels of IL-6 and tartrate-resistant acid phosphatase 5b (TRAP 5b) were decreased in ERKO and DERKO, but not in BERKO male mice. These results demonstrate that ER alpha, but not ER beta, is involved in the regulation of the vertebral OPG/RANKL ratio, serum levels of IL-6 and TRAP 5b in male mice.

Free access
MK Lindberg
Search for other papers by MK Lindberg in
Google Scholar
PubMed
Close
,
Z Weihua
Search for other papers by Z Weihua in
Google Scholar
PubMed
Close
,
N Andersson
Search for other papers by N Andersson in
Google Scholar
PubMed
Close
,
S Moverare
Search for other papers by S Moverare in
Google Scholar
PubMed
Close
,
H Gao
Search for other papers by H Gao in
Google Scholar
PubMed
Close
,
O Vidal
Search for other papers by O Vidal in
Google Scholar
PubMed
Close
,
M Erlandsson
Search for other papers by M Erlandsson in
Google Scholar
PubMed
Close
,
S Windahl
Search for other papers by S Windahl in
Google Scholar
PubMed
Close
,
G Andersson
Search for other papers by G Andersson in
Google Scholar
PubMed
Close
,
DB Lubahn
Search for other papers by DB Lubahn in
Google Scholar
PubMed
Close
,
H Carlsten
Search for other papers by H Carlsten in
Google Scholar
PubMed
Close
,
K Dahlman-Wright
Search for other papers by K Dahlman-Wright in
Google Scholar
PubMed
Close
,
JA Gustafsson
Search for other papers by JA Gustafsson in
Google Scholar
PubMed
Close
, and
C Ohlsson
Search for other papers by C Ohlsson in
Google Scholar
PubMed
Close

Estrogen exerts a variety of important physiological effects, which have been suggested to be mediated via the two known estrogen receptors (ERs), alpha and beta. Three-month-old ovariectomized mice, lacking one or both of the two estrogen receptors, were given estrogen subcutaneously (2.3 micro g/mouse per day) and the effects on different estrogen-responsive parameters, including skeletal effects, were studied. We found that estrogen increased the cortical bone dimensions in both wild-type (WT) and double ER knockout (DERKO) mice. DNA microarray analysis was performed to characterize this effect on cortical bone and it identified four genes that were regulated by estrogen in both WT and DERKO mice. The effect of estrogen on cortical bone in DERKO mice might either be due to remaining ERalpha activity or represent an ERalpha/ERbeta-independent effect. Other effects of estrogen, such as increased trabecular bone mineral density, thymic atrophy, fat reduction and increased uterine weight, were mainly ERalpha mediated.

Free access
K L Gustafsson Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by K L Gustafsson in
Google Scholar
PubMed
Close
,
K H Nilsson Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by K H Nilsson in
Google Scholar
PubMed
Close
,
H H Farman Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by H H Farman in
Google Scholar
PubMed
Close
,
A Andersson Center for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by A Andersson in
Google Scholar
PubMed
Close
,
V Lionikaite Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by V Lionikaite in
Google Scholar
PubMed
Close
,
P Henning Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by P Henning in
Google Scholar
PubMed
Close
,
J Wu Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by J Wu in
Google Scholar
PubMed
Close
,
S H Windahl Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by S H Windahl in
Google Scholar
PubMed
Close
,
U Islander Center for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by U Islander in
Google Scholar
PubMed
Close
,
S Movérare-Skrtic Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by S Movérare-Skrtic in
Google Scholar
PubMed
Close
,
K Sjögren Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by K Sjögren in
Google Scholar
PubMed
Close
,
H Carlsten Center for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by H Carlsten in
Google Scholar
PubMed
Close
,
J-Å Gustafsson Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA

Search for other papers by J-Å Gustafsson in
Google Scholar
PubMed
Close
,
C Ohlsson Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by C Ohlsson in
Google Scholar
PubMed
Close
, and
M K Lagerquist Center for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Search for other papers by M K Lagerquist in
Google Scholar
PubMed
Close

Estrogen treatment has positive effects on the skeleton, and we have shown that estrogen receptor alpha (ERα) expression in cells of hematopoietic origin contributes to a normal estrogen treatment response in bone tissue. T lymphocytes are implicated in the estrogenic regulation of bone mass, but it is not known whether T lymphocytes are direct estrogen target cells. Therefore, the aim of this study was to determine the importance of ERα expression in T lymphocytes for the estrogenic regulation of the skeleton using female mice lacking ERα expression specifically in T lymphocytes (Lck-ERα−/−) and ERαflox/flox littermate (control) mice. Deletion of ERα expression in T lymphocytes did not affect bone mineral density (BMD) in sham-operated Lck-ERα−/− compared to control mice, and ovariectomy (ovx) resulted in a similar decrease in BMD in control and Lck-ERα−/− mice compared to sham-operated mice. Furthermore, estrogen treatment of ovx Lck-ERα−/− led to an increased BMD that was indistinguishable from the increase seen after estrogen treatment of ovx control mice. Detailed analysis of both the appendicular (femur) and axial (vertebrae) skeleton showed that both trabecular and cortical bone parameters responded to a similar extent regardless of the presence of ERα in T lymphocytes. In conclusion, ERα expression in T lymphocytes is dispensable for normal estrogenic regulation of bone mass in female mice.

Open access