Prolactin (PRL) is a single-chain polypeptide hormone that is generally secreted from prolactin cells of the anterior pituitary gland into the blood circulation. However, recent studies indicate that the gene expression of prolactin is ectopic in several tissues across several species. These studies found that lymphocytes also produce PRL, which is involved in the immunoregulatory system. Here, we searched for PRL messenger ribonucleic acid (mRNA), using the reverse transcriptase-polymerase chain reaction (RT-PCR) and Southern blotting in the spleens of mice at various growth stages. We also localized mouse prolactin (mPRL) and its mRNA in the spleens of 30- and 60-day-old mice by immunohistochemistry and in situ hybridization respectively. The mPRL gene was expressed in all spleen samples at 0–60 days postpartum. We localized mPRL mRNA in the sheathed artery, periarterial lymphatic sheath and the marginal zone of the spleen. Moreover, we detected mPRL in essentially the same area as its mRNA. Furthermore, we performed double-fluorescence immunohistochemical staining for mPRL and mouse CD4 that is specifically produced in helper T cells, or for mPRL and mouse CD19 or CD40 specified B cells. We colocalized mPRL immunoreactivity only in some CD4-immunopositive cells. These results clearly suggest that T cells synthesize mPRL in the mouse spleen.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: S Yagi x
- Refine by Access: All content x
K Horiguchi, S Yagi, K Ono, Y Nishiura, M Tanaka, M Ishida, and T Harigaya
Pengli Bu, Shintaro Yagi, Kunio Shiota, S M Khorshed Alam, Jay L Vivian, Michael W Wolfe, M A Karim Rumi, Damayanti Chakraborty, Kaiyu Kubota, Pramod Dhakal, and Michael J Soares
Mammals share common strategies for regulating reproduction, including a conserved hypothalamic–pituitary–gonadal axis; yet, individual species exhibit differences in reproductive performance. In this report, we describe the discovery of a species-restricted homeostatic control system programming testis growth and function. Prl3c1 is a member of the prolactin gene family and its protein product (PLP-J) was discovered as a uterine cytokine contributing to the establishment of pregnancy. We utilized mouse mutagenesis of Prl3c1 and revealed its involvement in the regulation of the male reproductive axis. The Prl3c1-null male reproductive phenotype was characterized by testiculomegaly and hyperandrogenism. The larger testes in the Prl3c1-null mice were associated with an expansion of the Leydig cell compartment. Prl3c1 locus is a template for two transcripts (Prl3c1 -v1 and Prl3c1-v2) expressed in a tissue-specific pattern. Prl3c1-v1 is expressed in uterine decidua, while Prl3c1-v2 is expressed in Leydig cells of the testis. 5′RACE, chromatin immunoprecipitation and DNA methylation analyses were used to define cell-specific promoter usage and alternative transcript expression. We examined the Prl3c1 locus in five murid rodents and showed that the testicular transcript and encoded protein are the result of a recent retrotransposition event at the Mus musculus Prl3c1 locus. Prl3c1-v1 encodes PLP-J V1 and Prl3c1-v2 encodes PLP-J V2. Each protein exhibits distinct intracellular targeting and actions. PLP-J V2 possesses Leydig cell-static actions consistent with the Prl3c1-null testicular phenotype. Analysis of the biology of the Prl3c1 gene has provided insight into a previously unappreciated homeostatic setpoint control system programming testicular growth and function.