Sexual differentiation and early embryonic/fetal gonad development is a tightly regulated process controlled by numerous endocrine and molecular signals. These signals ensure appropriate structural organization and subsequent development of gonads and accessory organs. Substantial differences exist in adult reproductive characteristics in Meishan (MS) and White Composite (WC) pig breeds. This study compared the timing of embryonic sexual differentiation in MS and WC pigs. Embryos/fetuses were evaluated on 26, 28, 30, 35, 40 and 50 days postcoitum (dpc). Gonadal differentiation was based on morphological criteria and on localization of GATA4, Mullerian-inhibiting substance (MIS) and 17alpha-hydroxylase/17,20-lyase cytochrome P450 (P450(c17)). The timing of testicular cord formation and functional differentiation of Sertoli and Leydig cells were similar between breeds. Levels of GATA4, MIS and P450(c17) proteins increased with advancing gestation, with greater levels of MIS and P450(c17) in testes of MS compared with WC embryos. Organization of ovarian medullary cords and formation of egg nests was evident at similar ages in both breeds; however, a greater number of MS compared with WC embryos exhibited signs of ovarian differentiation at 30 dpc. In summary, despite breed differences in MIS and P450(c17) levels in the testis, which may be related to Sertoli and Leydig cell function, the timing of testicular differentiation did not differ between breeds and is unlikely to impact reproductive performance in adult boars. In contrast, female MS embryos exhibited advanced ovarian differentiation compared with WC embryos which may be related to the earlier reproductive maturity observed in this breed.
Search Results
You are looking at 1 - 3 of 3 items for
- Author: SA McCoard x
- Refine by Access: All content x
SA McCoard, TH Wise, and JJ Ford
The aim of this study was to evaluate developmental changes in thyroid hormone and other key endocrine hormones/molecular markers produced by testicular cells, in relation to breed differences in proliferation and maturation of Sertoli cells and general testicular morphological development in Meishan (MS) and White Composite (WC) boars. Blood samples and testes were collected on days 60, 75, 90 and 105 post coitum (dpc) and days 1, 7, 14 and 25 post partum (dpp). Testes were immunostained for thyroid hormone receptor-beta1 (THRbeta1), GATA4, Mullerian-inhibiting substance (MIS), 17-alpha-hydroxylase (P450(c17)) and inhibin subunits (alpha, betaA, betaB). In addition, protein levels were determined by densitometry. Plasma concentrations of free triiodothyronine (T(3)) were greater in MS (hyperthyroid) compared with WC (hypothyroid) boars (P<0.01) during fetal life, but the reverse was evident postnatally. Elevated levels of free T(3) during fetal life were associated with increased levels of THRbeta1, suggesting increased thyroid responsiveness of the testis during this time, contrasting with observations during early postnatal life. Localization patterns of THRbeta1, MIS, GATA4 and the inhibin subunits were consistent with previous studies. MIS protein levels declined more rapidly (P<0.001) in MS compared with WC Sertoli cells postnatally, consistent with earlier maturation of Sertoli cells as indicated by our previous study. In this study, transient neonatal hyperthyroidism in MS boars during late gestation was associated with a decline in proliferation and early maturation of Sertoli cells, followed by early onset of puberty in this breed. These observations indicate a possible role for thyroid hormone in the modification of Sertoli cell development, thereby influencing growth and differentiation of the testis in pigs.
SA McCoard, TH Wise, DD Lunstra, and JJ Ford
Chinese Meishan (MS) boars have smaller testes due to fewer Sertoli cells compared with White Composite (WC) boars. The objective was to describe Sertoli cell development relative to circulating FSH concentrations in fetal and neonatal MS and WC boars. Testes and blood samples were collected on days 60, 75, 90 and 105 postcoitum (dpc) and 1, 7, 14 and 25 postpartum (dpp). One testis was immunostained for GATA4 or Ki67 antigen to evaluate total and proliferating Sertoli cell numbers respectively. Testicular size was greater (P<0.01) in WC than MS boars at all ages, associated with a greater mass of interstitial tIssue. Tubular mass (P<0.01) was greater in prenatal WC boars, but postnatally increased more rapidly (P<0.001) in MS boars, exceeding WC boars by 25 dpp. Sertoli cell numbers increased with age, was greater (P<0.001) in WC than MS boars during prenatal development but increased rapidly (P<0.01) by 1 dpp in MS and thereafter was similar in both breeds. The proportion of Ki67-positive Sertoli cells was maximal at 90 dpc, declining thereafter, did not differ between breeds through 7 dpp, but was greater (P<0.05) in WC than MS boars at 14 and 25 dpp. Plasma FSH concentrations were greater (P<0.05) in WC than MS boars at 75 dpc. FSH concentrations were elevated at 105 dpc (MS) and 1 dpp (WC) but declined thereafter with advancing postnatal age in both breeds. This study illustrates that late gestation represents the period of maximal Sertoli cell proliferation. Despite asynchronous Sertoli cell population growth between breeds during early postnatal life, differential mature Sertoli cell numbers and testicular size are probably due to differences in duration of the proliferative period after 25 dpp, potentially regulated by Sertoli cell maturation and blood-testis barrier formation. These events were not associated with fetal or early postnatal changes in FSH secretion.