Search Results

You are looking at 1 - 2 of 2 items for

  • Author: SC Hodgkinson x
  • Refine by access: All content x
Clear All Modify Search
Napier JR
Search for other papers by Napier JR in
Google Scholar
PubMed
Close
,
MF Thomas
Search for other papers by MF Thomas in
Google Scholar
PubMed
Close
,
M Sharma
Search for other papers by M Sharma in
Google Scholar
PubMed
Close
,
SC Hodgkinson
Search for other papers by SC Hodgkinson in
Google Scholar
PubMed
Close
, and
JJ Bass
Search for other papers by JJ Bass in
Google Scholar
PubMed
Close

Insulin-like growth factor-I (IGF-I) has been shown to stimulate myoblast proliferation for a limited time after which serum is required to reactivate IGF-I-stimulated myoblast proliferation. The aim of these studies was to determine whether IGF-I can stimulate myoblast proliferation and/or inhibit apoptosis alone or whether co-factors are necessary. This was achieved by investigating the proliferative response of L6 myoblasts to IGF-I and horse serum (HS) and by examining the status of cells in terms of cell number, substrate adherence, cell viability and DNA laddering following incubation with IGF-I and HS. L6 myoblasts proliferate in response to IGF-I after 36 h is not due to accumulation of waste products or lack of IGF-I. The addition of a low level (1% v/v) of HS restores the ability of myoblasts to proliferate in response to IGF-I and this supports the existence of a mitogenic competence factor. Furthermore, myoblasts failing to proliferate in response to IGF-I after 36 h regain the capacity to respond to IGF-I for a further period of 36 h when exposed to fetal bovine serum. Following the initial (36 h) phase of IGF-I-stimulated proliferation, removal of both IGF-I and HS led to a dramatic (60%) reduction in the number of cells fully attached to the culture vessel, with 60% of the completely detached cells dead. Agarose gel electrophoresis of extracts from these detached cells revealed higher levels of DNA laddering than extracts prepared from attached cells with IGF-I present. This suggests that IGF-I acts as a survival factor by protecting cells from apoptosis. In conclusion these experiments support the presence of a mitogenic competence factor in horse serum, which restores the ability of cells to proliferate in response to IGF-I. Unlike proliferation, protection against apoptosis is achieved by IGF-I or HS independently of each other.

Free access
JM Oldham
Search for other papers by JM Oldham in
Google Scholar
PubMed
Close
,
JA Martyn
Search for other papers by JA Martyn in
Google Scholar
PubMed
Close
,
KM Hua
Search for other papers by KM Hua in
Google Scholar
PubMed
Close
,
NA MacDonald
Search for other papers by NA MacDonald in
Google Scholar
PubMed
Close
,
SC Hodgkinson
Search for other papers by SC Hodgkinson in
Google Scholar
PubMed
Close
, and
JJ Bass
Search for other papers by JJ Bass in
Google Scholar
PubMed
Close

In post-natal animals, plasma concentrations of IGF-I are tightly regulated by nutritional status. The current study reports that plasma levels of IGF-II in sheep are also regulated by nutrition, but whether plasma IGF-II is increased, decreased or remains the same, depends on the age of the animal. Ewe lambs, ranging in age from 2 days to 2 years, were fed or fasted for lengths of time between 24 and 72 h. Blood samples were taken at intervals of 24 h throughout the treatment period and immediately before slaughter. Plasma concentrations of IGF-I increased with advancing age in fed animals (P<0.001) and were reduced by fasting in all age groups (P<0.001). Plasma concentrations of IGF-II also increased as animals matured (P<0.001), but did not show an overall effect of the fasting treatment. An interaction between age and nutrition (P<0.001) resulted from a decrease in plasma IGF-II in response to fasting in neonatal animals (P<0.01) and, conversely, increased levels of plasma IGF-II in fasted mature animals (P<0.01 or P<0.001). Fasted sheep of peripubertal age showed no change in plasma levels of IGF-II. The nutritional sensitivity of serum IGF-binding proteins (BPs) also changed with age. The 29 kDa BP, which we presume to be BP1, was elevated by fasting in young animals and reduced slightly in older animals. BP2 was increased to a similar magnitude by fasting at all ages. BP3 was depressed by fasting in young animals and showed little change in adults. In contrast, a 24 kDa BP, which is probably BP4, showed little change in young animals and was reduced substantially in older sheep. In conclusion, the response of plasma IGF-II to fasting suggests that this peptide has functions in mediating nutritional stress which depend on the age of the animal, and also that the role of IGF-II may differ from that of IGF-I in adults.

Free access