Search Results

You are looking at 1 - 3 of 3 items for

  • Author: SJ Lye x
  • Refine by access: All content x
Clear All Modify Search
S.J. Lye
Search for other papers by S.J. Lye in
Google Scholar
PubMed
Close
,
M.E. Wlodek
Search for other papers by M.E. Wlodek in
Google Scholar
PubMed
Close
, and
J.R.G. Challis
Search for other papers by J.R.G. Challis in
Google Scholar
PubMed
Close

ABSTRACT

Uterine contractions, induced by the administration of oxytocin to sheep between d 123-144 of pregnancy, were associated with a mean transient decrease in fetal PaO2 of 2.8 mm Hg within 5 min. These changes were associated with a rapid increase in the concentration of ACTH in fetal plasma. There was a significant (P<0.05) increase in the percentage change (+40 to +47%) over basal ACTH levels in fetal plasma at +5, +15 and +20 min after oxytocin. Administration of saline had no significant effect on intrauterine pressure, fetal PaO2 or fetal plasma ACTH levels. We speculate that increases in uterine activity and/or transient decreases in fetal PaO2 may contribute to short-term fluctuations in plasma ACTH in fetal sheep.

Restricted access
W Gibb
Search for other papers by W Gibb in
Google Scholar
PubMed
Close
,
M Sun
Search for other papers by M Sun in
Google Scholar
PubMed
Close
,
S Gyomorey
Search for other papers by S Gyomorey in
Google Scholar
PubMed
Close
,
SJ Lye
Search for other papers by SJ Lye in
Google Scholar
PubMed
Close
, and
Challis JR
Search for other papers by Challis JR in
Google Scholar
PubMed
Close

Increased prostaglandin production by tissues in the sheep uterus and placenta are thought to be important for the onset of parturition. In the sheep placenta, this is most likely due to increased expression of prostaglandin synthase type-2 (PGHS-2) rather than prostaglandin synthase type-1 (PGHS-1). However, there is no information concerning expression of PGHS isoenzymes in maternal uterine tissues during pregnancy. Therefore, the purpose of the present study was to examine the expression of PGHS-1 and PGHS-2 in the sheep myometrium and endometrium during late gestation using in situ hybridization and immunohistochemistry. Using (35)S-labelled oligonucleotide probes, which give specific hybridization signals in other tissues, we localized PGHS-2 mRNA to endometrial epithelium, and apparently to other cells in both endometrium and myometrium. This artefactual signal was still present with 100-fold excess unlabelled oligonucleotide probe and with sense probes, but was resolved with the use of (33)P-oligonucleotides. Using (33)P-labelled oligonucleotide probes we could not detect either PGHS-1 or PGHS-2 mRNA in myometrium, and found expression only of PGHS-2 mRNA in endometrium. PGHS-2 mRNA localized to the endometrial epithelium and was undetectable in glandular epithelium. The level of PGHS-2 expression rose significantly between days 80 and 85 of pregnancy and term, and this corresponded to the appearance of immunoreactive PGHS-2 protein, measured by immunohistochemistry, in the endometrial epithelium. Therefore we conclude that (33)P-labelled probes are preferred for detection of mRNAs encoding PGHS-2 in ovine uterine tissues. Expression of PGHS-2 mRNA is greater than that of PGHS-1, increases during gestation, and predominates in the endometrial epithelium, consistent with the site of PGHS-2 protein localization.

Free access
S Gupta
Search for other papers by S Gupta in
Google Scholar
PubMed
Close
,
N Alfaidy
Search for other papers by N Alfaidy in
Google Scholar
PubMed
Close
,
AC Holloway
Search for other papers by AC Holloway in
Google Scholar
PubMed
Close
,
WL Whittle
Search for other papers by WL Whittle in
Google Scholar
PubMed
Close
,
SJ Lye
Search for other papers by SJ Lye in
Google Scholar
PubMed
Close
,
W Gibb
Search for other papers by W Gibb in
Google Scholar
PubMed
Close
, and
Challis JR
Search for other papers by Challis JR in
Google Scholar
PubMed
Close

In the late-gestation sheep, increased fetal plasma cortisol concentration and placental oestradiol (E(2)) output contribute to fetal organ maturation, in addition to the onset of parturition. Both cortisol and E(2) are believed to regulate the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), which interconverts bioactive 11-hydroxy glucocorticoids and their inactive 11-keto metabolites. 11beta-HSD1, abundantly expressed in fetal liver, operates primarily as a reductase enzyme to produce bioactive cortisol and thus regulates local hepatic glucocorticoid concentrations. Cortisol acts through the glucocorticoid receptor (GR) present in the liver. In this study, we examined the effects of cortisol and E(2) on hepatic 11beta-HSD1 and GR in the liver of chronically catheterized sheep fetuses treated with saline (n=5), cortisol (1.35 mg/h; n=5), saline+4-hydroxyandrostendione, a P450 aromatase inhibitor (4-OHA; 1.44 mg/h; n=5), or cortisol+4-OHA (n=5). Cortisol infusion resulted in increased plasma concentrations of fetal cortisol and E(2); concurrent administration of 4-OHA attenuated the increase in plasma E(2) concentrations. Using immunohistochemistry, we showed that fetal hepatocytes expressed both 11beta-HSD1 and GR proteins. Cortisol treatment increased GR in both cytosol and nuclei of hepatocytes; concurrent administration of 4-OHA was associated with distinct nuclear GR staining. Western blot revealed that cortisol, in the absence of increased E(2) concentrations, significantly increased concentrations of 11beta-HSD1 (34 kDa) and GR (95 kDa) proteins. 11beta-HSD1 enzyme activity was measured in the liver microsomal fraction in the presence of [(3)H]cortisone (10(-)(6) M) or [(3)H]cortisol (10(-)(6) M) and NADPH (reductase activity) or NADP(+) (dehydrogenase activity) respectively. 11beta-HSD1 reductase activity was significantly greater in the presence of cortisol. In summary, we found that, in sheep during late gestation, cortisol increased both 11beta-HSD1 and GR in the fetal liver, and these effects were accentuated in the absence of increased E(2).

Free access