Search Results

You are looking at 1 - 1 of 1 items for

  • Author: SJ Weroha x
  • Refine by Access: All content x
Clear All Modify Search
Free access

SA Li, SJ Weroha, O Tawfik, and JJ Li

There is increasing evidence that both endogenous and exogenously ingested estrogens play a primary role in sporadic breast cancer causation. To establish further that solely estrogen-induced mammary oncogenesis in female ACI rats is an estrogen receptor (ERalpha)-driven process, we show for the first time that concomitant treatment with the antiestrogen, tamoxifen citrate (TAMc), completely prevents the induction of 17beta-estradiol (E(2))-induced mammary gland tumors (MGTs). This finding is also supported by the reduced mammary gland (MG) lobulo-alveolar development and proliferative activity observed in TAMc+E(2)-treated animals compared with MGs from animals treated with E(2) alone. These data also correlated with a marked decrease in the number of MG cells expressing ERalpha and progesterone receptor (PR) in immunostained MG tissue sections from TAMc+E(2)-treated animals. Additionally, a marked decline in the level of expression of ERalpha 47, 56 and 66 kDa forms, and PR-A and PR-B was seen in TAMc+E(2)-treated MGs, compared with MGs treated solely with E(2). Thus, both ERalpha and PR MG profiles in TAMc+E(2)-treated rats essentially revert to their respective receptor profiles seen in untreated control and TAMc-alone-treated rats. The presence of 56 and 54 kDa isoforms in chronically E(2)-treated MGs and in MGTs respectively may contribute to fostering the enhanced E(2)-dependent growth response of both precursor and frank MGT epithelial cells. These findings are consistent with an ERalpha/PR-mediated mg cell proliferation, a prerequisite for generating the high frequency of chromosomal instability seen in E(2)-induced ductal carcinomas in situ and primary MGTs in female ACI rats reported by us previously.