Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Satoshi Onodera x
  • Refine by access: All content x
Clear All Modify Search
Koji Y Arai Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Animal Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Department of Basic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
Air Pollutants Health Effect Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan
Ecological Effect Research Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan

Search for other papers by Koji Y Arai in
Google Scholar
PubMed
Close
,
Hisashi Kishi Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Animal Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Department of Basic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
Air Pollutants Health Effect Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan
Ecological Effect Research Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan

Search for other papers by Hisashi Kishi in
Google Scholar
PubMed
Close
,
Satoshi Onodera Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Animal Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Department of Basic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
Air Pollutants Health Effect Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan
Ecological Effect Research Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan

Search for other papers by Satoshi Onodera in
Google Scholar
PubMed
Close
,
Wanzhu Jin Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Animal Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Department of Basic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
Air Pollutants Health Effect Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan
Ecological Effect Research Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan

Search for other papers by Wanzhu Jin in
Google Scholar
PubMed
Close
,
Gen Watanabe Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Animal Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Department of Basic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
Air Pollutants Health Effect Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan
Ecological Effect Research Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan

Search for other papers by Gen Watanabe in
Google Scholar
PubMed
Close
,
Akira K Suzuki Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Animal Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Department of Basic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
Air Pollutants Health Effect Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan
Ecological Effect Research Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan

Search for other papers by Akira K Suzuki in
Google Scholar
PubMed
Close
,
Shinji Takahashi Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Animal Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Department of Basic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
Air Pollutants Health Effect Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan
Ecological Effect Research Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan

Search for other papers by Shinji Takahashi in
Google Scholar
PubMed
Close
,
Toshihiko Kamada Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Animal Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Department of Basic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
Air Pollutants Health Effect Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan
Ecological Effect Research Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan

Search for other papers by Toshihiko Kamada in
Google Scholar
PubMed
Close
,
Toshio Nishiyama Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Animal Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Department of Basic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
Air Pollutants Health Effect Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan
Ecological Effect Research Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan

Search for other papers by Toshio Nishiyama in
Google Scholar
PubMed
Close
, and
Kazuyoshi Taya Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Laboratory of Animal Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
Department of Basic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
Air Pollutants Health Effect Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan
Ecological Effect Research Team, National Institute of Environmental Studies, Ibaraki 305-0053, Japan

Search for other papers by Kazuyoshi Taya in
Google Scholar
PubMed
Close

To elucidate changing patterns of inhibin/activin subunit mRNAs in the ovary of the golden hamster (Mesocricetus auratus) during the oestrous cycle, inhibin/activin subunit cDNAs of this species were cloned and ribonuclease protection assay and in situ hybridization were carried out. Inhibin α-subunit mRNA was localized in granulosa cells of primary, secondary, tertiary and atretic follicles throughout the 4-day oestrous cycle. It was also expressed in luteal cells on days 1 (oestrus), 2 (metoestrus) and 3 (dioestrus). βA-subunit mRNA was localized in granulosa cells of large secondary (>200 μm) and tertiary follicles throughout the oestrous cycle. βB-subunit mRNA was confined to granulosa cells of large secondary and tertiary follicles. Both α- and βA-subunit mRNAs were also found in ovarian interstitial cells and theca interna cells of tertiary and atretic follicles in the evening of day 4 (pro-oestrus). A striking increase in βA-subunit mRNA levels was also observed during the preovulatory period. The expression pattern of βA-subunit mRNA during the preovulatory period is unique and not found in other species. An i.v. injection of anti-luteinizing hormone-releasing hormone (LHRH) serum before the LH surge abolished the expression of α- and βA-subunit mRNAs in ovarian interstitial cells and theca interna cells. The treatment also abolished the preovulatory increase in βA-subunit mRNA. Furthermore, administration of human chorionic gonadotrophin (hCG), which followed the injection of anti-LHRH serum, restored the expression patterns of α- and βA-subunit mRNAs. The present study revealed that the golden hamster showed a unique expression pattern of βA-subunit mRNA in response to the LH surge.

Free access