Search Results
You are looking at 1 - 2 of 2 items for
- Author: Sylvain Sebert x
- Refine by access: All content x
Early Life Research Unit, INRA and University of Nantes, School of Veterinary Medicine and Science, Institute of Health Sciences, Oniris, Department of Animal Science, Academic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UK
Search for other papers by Neele S Dellschaft in
Google Scholar
PubMed
Search for other papers by Marie-Cecile Alexandre-Gouabau in
Google Scholar
PubMed
Search for other papers by David S Gardner in
Google Scholar
PubMed
Search for other papers by Jean-Philippe Antignac in
Google Scholar
PubMed
Search for other papers by Duane H Keisler in
Google Scholar
PubMed
Search for other papers by Helen Budge in
Google Scholar
PubMed
Search for other papers by Michael E Symonds in
Google Scholar
PubMed
Early Life Research Unit, INRA and University of Nantes, School of Veterinary Medicine and Science, Institute of Health Sciences, Oniris, Department of Animal Science, Academic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UK
Search for other papers by Sylvain P Sebert in
Google Scholar
PubMed
Maternal caloric restriction during late gestation reduces birth weight, but whether long-term adverse metabolic outcomes of intra-uterine growth retardation (IUGR) are dependent on either accelerated postnatal growth or exposure to an obesogenic environment after weaning is not established. We induced IUGR in twin-pregnant sheep using a 40% maternal caloric restriction commencing from 110 days of gestation until term (∼147 days), compared with mothers fed to 100% of requirements. Offspring were reared either as singletons to accelerate postnatal growth or as twins to achieve standard growth. To promote an adverse phenotype in young adulthood, after weaning, offspring were reared under a low-activity obesogenic environment with the exception of a subgroup of IUGR offspring, reared as twins, maintained in a standard activity environment. We assessed glucose tolerance together with leptin and cortisol responses to feeding in young adulthood when the hypothalamus was sampled for assessment of genes regulating appetite control, energy and endocrine sensitivity. Caloric restriction reduced maternal plasma glucose, raised non-esterified fatty acids, and changed the metabolomic profile, but had no effect on insulin, leptin, or cortisol. IUGR offspring whose postnatal growth was enhanced and were obese showed insulin and leptin resistance plus raised cortisol. This was accompanied by increased hypothalamic gene expression for energy and glucocorticoid sensitivity. These long-term adaptations were reduced but not normalized in IUGR offspring whose postnatal growth was not accelerated and remained lean in a standard post-weaning environment. IUGR results in an adverse metabolic phenotype, especially when postnatal growth is enhanced and offspring progress to juvenile-onset obesity.
Department of Agricultural Sciences, Imperial College London, Wye Campus, Ashford, Kent TN25 5AH, UK
Search for other papers by Alison Mostyn in
Google Scholar
PubMed
Department of Agricultural Sciences, Imperial College London, Wye Campus, Ashford, Kent TN25 5AH, UK
Search for other papers by Sylvain Sebert in
Google Scholar
PubMed
Department of Agricultural Sciences, Imperial College London, Wye Campus, Ashford, Kent TN25 5AH, UK
Search for other papers by Jennie C Litten in
Google Scholar
PubMed
Department of Agricultural Sciences, Imperial College London, Wye Campus, Ashford, Kent TN25 5AH, UK
Search for other papers by Katharine S Perkins in
Google Scholar
PubMed
Department of Agricultural Sciences, Imperial College London, Wye Campus, Ashford, Kent TN25 5AH, UK
Search for other papers by John Laws in
Google Scholar
PubMed
Department of Agricultural Sciences, Imperial College London, Wye Campus, Ashford, Kent TN25 5AH, UK
Search for other papers by Michael E Symonds in
Google Scholar
PubMed
Department of Agricultural Sciences, Imperial College London, Wye Campus, Ashford, Kent TN25 5AH, UK
Search for other papers by Lynne Clarke in
Google Scholar
PubMed
Neonatal mortality is greater in commercial porcine genotypes, compared with the ancient Meishan breed that rapidly lay down adipose tissue; this may be related to hormones, such as triiodothyronine (T3) or leptin. Leptin is present in maternal milk; however, the extent to which this supply provides the neonate with leptin is unknown, but may play a role in growth and development. We investigated whether thyroid hormones and leptin concentrations in maternal milk differed between genotypes; and whether this influenced piglet concentrations or expression of genes involved in adipose tissue regulation. Eight Meishan and six commercial sows were entered into the study and milk samples from the day of parturition to day 4 postpartum was taken daily. The median birth weight piglet in each litter had a daily venous blood sample taken and was euthanised on day 4. Gene expressions of IGF-I, IGF-binding protein 3 (IGFBP-3), peroxisome proliferators activated receptor (PPAR)γ and glucocorticoid receptor (GR) were measured in adipose tissue using real-time PCR. T3 was increased in Meishan milk, but not in piglet plasma. Milk thyroxine was similar between breeds but commercial piglet levels were significantly higher. Leptin was higher in commercial sow milk throughout the study. Milk leptin was strongly correlated to plasma leptin during the first postnatal days and also to organ and body weight in Meishan piglets that also had significantly higher expression of GR, but not IGF-I, IGFBP-3 or PPARγ. In conclusion, we have found a significant disparity in the provision of thyroid hormones in Meishan and commercial sow’s milk. These changes are not always translated to plasma concentrations of hormone in the piglet. Leptin appears to have a stronger role in growth and development in the Meishan genotype compared with commercial; along with the increased GR expression, this may also represent a potential mechanism behind the rapid accumulation of adipose tissue in Meishan piglets.