Search Results

You are looking at 1 - 5 of 5 items for

  • Author: T Adachi x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

K Amemiya, H Kurachi, H Adachi, K-I Morishige, K Adachi, T Imai, and A Miyake

Abstract

We have studied the expression of epidermal growth factor (EGF) and EGF receptors (EGF-R) in isolated human trophoblast cells at various stages of differentiation and also the biological significance of the EGF/EGF-R autocrine and paracrine mechanism. Cytotrophoblast cells were isolated from human placental tissues of 6–9 weeks of gestation. Trophoblast cells underwent morphological and functional differentiation during in vitro culture. The expression of EGF and EGF-R protein and mRNA was studied in trophoblast cells cultured for 0–5 days, using immunocytochemical staining, and reverse transcription and polymerase chain reaction. Monoclonal antibodies (mAbs) against EGF and EGF-R showed specific staining in trophoblast cells at all stages of differentiation. Both EGF and EGF-R gene transcripts were detected in RNA samples isolated from trophoblast cells at all stages. These data suggest the presence of an EGF/EGF-R autocrine and paracrine mechanism in human trophoblast cells. Next, we examined the biological significance of this mechanism on trophoblast cell differentiation in vitro. EGF added to the culture medium significantly increased human chorionic gonadotrophin-β (hCG-β) secretion and, more importantly, anti-EGF neutralizing mAbs significantly reduced both hCG-β and human placental lactogen secretion from trophoblast cells in culture. All these results suggest that human trophoblast cells express both EGF and EGF-R, and that EGF may play an important role in the functional differentiation of human trophoblast cells.

Journal of Endocrinology (1994) 143, 291–301

Restricted access

H Adachi, H Kurachi, H Homma, K Adachi, T Imai, M Sakata, Y Matsuzawa, and A Miyake

Abstract

Aged mice exhibit an increase in their body weight (BW), which is associated with fat deposit increase. Epidermal growth factor (EGF) concentration in the submandibular gland also increases with aging. We examined the effects of elevated EGF on the adiposity of aged female mice. Studies were started in two groups of animals consisting of sham-operated (n=10) and sialoadenectomized (n=10, Sx; surgical removal of the submandibular glands) mice at 8 weeks of age. Body weight gain and food intake were measured throughout 78 weeks of age in these two groups. Body weight was significantly less in the Sx group throughout 78 weeks, while food intake was not changed by Sx after 12 weeks of age. To examine further if EGF plays a role in the induction of adiposity in aged female mice, sham-operated animals were given 100 μl anti-EGF rabbit antiserum (anti-EGF group, n=5) or normal rabbit serum (control group, n=5) every 3 days, and Sx animals were given 5 μg/day EGF (Sx+EGF group, n=5) or saline (Sx group, n=5) from 78 weeks of age for 3 weeks. At 81 weeks of age, all animals of these four groups were killed, and carcass fat deposition and fat cell sizes were measured. Although the relative weights (weight ratio to BW) of the liver and kidney were not changed by Sx and anti-EGF treatment, the relative weights of mesenteric and subcutaneous fat tissues and adipocyte weights were significantly decreased in Sx and anti-EGF groups compared with the control group. Moreover, both acyl-CoA synthetase (ACS) and lipoprotein lipase (LPL) mRNA levels were significantly decreased by Sx or anti-EGF administration in mesenteric and subcutaneous fat tissues. On the other hand, EGF administration to Sx animals had no effect on BW, fat tissues and adipocyte weights, and ACS and LPL mRNA levels. The results, however, were consistent with the fact that adipose tissue EGF receptors were down regulated in Sx mice. These findings suggest that EGF may play a role in the induction of adiposity in aged female mice.

Journal of Endocrinology (1995) 146, 381–393

Free access

T Okabe, R Takayanagi, M Adachi, K Imasaki, and H Nawata

Nur77 is a member of the steroid receptor superfamily and is known to be expressed in animals under stress. We studied the role of nur77 in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis during the stress response using a murine pituitary corticotrope cell line, AtT-20. Corticotropin-releasing hormone (CRH), a stress mediator in the HPA axis, induced the expression of nur77 transiently in AtT-20 cells. Gel shift assay showed that nur77 bound to negative glucocorticoid responsive element (nGRE) in the promoter of the human proopiomelanocortin (POMC) gene and the formation of the nur77-nGRE complex increased after treatment of the cells with CRH. Negative GRE is known to be necessary for the negative regulation by glucocorticoid of the POMC gene expression. In stable transformants of AtT-20 cells expressing a human homolog of nur77, NAK-1, at a high level, glucocorticoid-mediated inhibition of both POMC mRNA induction and ACTH secretion was significantly lower than that in the NAK-1-non-expressing cells (P < 0.001). These results strongly suggest that nur77 antagonizes the negative feedback effect of glucocorticoid on the synthesis and secretion of ACTH in pituitary corticotropes. This suggests that nur77 plays an important role in the pituitary gland in the biological adaptation to overcome stress.

Free access

T Adachi, M Inoue, H Hara, E Maehata, and S Suzuki

Extracellular-superoxide dismutase (EC-SOD) is a secretory glycoprotein located in blood vessel walls at high levels and may be important in the antioxidant capability of vascular walls. The aim of this study was to assess plasma levels of EC-SOD and to evaluate the relationship of the EC-SOD level with insulin resistance in type 2 diabetic patients. We determined plasma EC-SOD in 122 patients and found for the first time that the EC-SOD level was strongly and positively related to adiponectin (r=0.503, P < 0.001), and significantly and inversely related to fasting plasma glucose (FPG) (r=-0.209, P=0.022), body-mass index (BMI) (r=-0.187, P=0.040) and homeostasis model assessment-insulin resistance index (HOMA-R) (r=-0.190, P=0.039). Stepwise-multiple regression analysis also showed a significant influence of adiponectin (F=33.27) on the EC-SOD level. Administration of pioglitazone to 19 diabetic patients significantly increased the plasma levels of EC-SOD (69.9+/-19.3 ng/ml to 97.4+/-25.9 ng/ml; P < 0.0001) and adiponectin, while it decreased tumor necrosis factor-alpha (TNF-alpha). The present observations suggest that factors related to the pathogenesis of insulin resistance play an important role in the regulation of the plasma EC-SOD concentration. It is possible that the increase in the EC-SOD level by pioglitazone administration in diabetic patients is due to a decline of TNF-alpha, which is known to suppress EC-SOD expression.

Restricted access

K Adachi, H Kurachi, H Adachi, T Imai, M Sakata, H Homma, O Higashiguchi, T Yamamoto, and A Miyake

Abstract

We studied the expression of epidermal growth factor (EGF) receptor protein and messenger RNA (mRNA) in human fallopian tubes at three stages of the menstrual cycle: early follicular (n=3), late follicular (n=3) and luteal (n=3). Immunohistochemical studies in the ampullary portion of the tubes showed that specific staining was localized to the epithelium and the vascular endothelium. Staining of the epithelium was intense at the late follicular and luteal stages, while it was weak at the early follicular stage. 125I-EGF binding study in the tubal plasma membranes revealed a class of high-affinity EGF receptors. Although dissociation constants were similar between the stages, numbers of binding sites at the late follicular and luteal stages were significantly (P<0·01) greater than those at the early follicular stage. Western blotting showed that tubal plasma membranes contain M r 170 000 EGF receptor protein. The amounts were significantly (P<0·01, n=3) greater at the late follicular and luteal stages than those at the early follicular stage. Reverse transcription and polymerase chain reaction (RT-PCR) revealed that EGF receptor mRNA was expressed in all the 9 RNA samples (n=3 for each stage) from the tubal ampullary portion. The amounts were significantly (P<0·01, n=3) greater at the late follicular and luteal stages than those at the early follicular stage (by a competitive PCR). Increase in the amounts of EGF receptor protein and mRNA occurred in association with an increase in serum oestradiol but not progesterone levels. Next we examined whether EGF receptor and its ligands (EGF and transforming growth factor a) are directly induced by oestrogen. We found that specific staining for EGF receptor and its ligands in the tubal epithelium was detected (by immunohistochemistry) in postmenopausal women with oestrogen replacement (n = 3), but not in subjects without oestrogen replacement (n=3). These results suggested that EGF receptors in the human tubal epithelium are expressed in relation to specific stages of the menstrual cycle and that the expression may be induced by oestrogen.

Journal of Endocrinology (1995) 147, 553–563