Leptin can regulate several immune functions. However, the role of leptin on lymphocyte function has not been recognized in vivo. Accordingly, we have investigated the effect of leptin on starvation-induced immune dysfunction using diet-induced obese mice. To induce obesity, C57BL/6J mice were fed a high-fat diet for 14 weeks and control mice were fed a standard diet for the same period. The obese and control groups of mice were then starved for 48 h, and received intraperitoneal injections of recombinant leptin or phosphate-buffered saline four times during starvation. Other control mice in both diet groups were free fed without being starved. Although starvation of the control mice dramatically reduced the weights of the immune organs, cytokine production and increased proliferation of cultured splenocytes, these levels returned to those of the free-feeding groups with exogenous leptin administration. However, these effects of leptin were not observed in obese mice. These findings provide some evidence that leptin can regulate the immune function in vivo. It is also suggested that the action of leptin might not appear in obesity.
Search Results
You are looking at 1 - 3 of 3 items for
- Author: T Hosoda x
- Refine by Access: All content x
N Mito, H Yoshino, T Hosoda, and K Sato
H Kaiya, M Kojima, H Hosoda, LG Riley, T Hirano, EG Grau, and K Kangawa
We purified ghrelin from stomach extracts of a teleost fish, the Japanese eel (Anguilla japonica) and found that it contained an amide structure at the C-terminal end. Two molecular forms of ghrelin with 21 amino acids were identified by cDNA and mass spectrometric analyses: eel ghrelin-21, GSS(O-n-octanoyl)FLSPSQRPQGKDKKPP RV-amide and eel ghrelin-21-C10, GSS(O-n-decanoyl) FLSPSQRPQGKDKKPPRV-amide. Northern blot and RT-PCR analyses revealed high gene expression in the stomach. Low levels of expression were found only in the brain, intestines, kidney and head kidney by RT-PCR analysis. Eel ghrelin-21 increased plasma growth hormone (GH) concentrations in rats after intravenous injection; the potency was similar to that of rat ghrelin. We also examined the effect of eel ghrelin on the secretion of GH and prolactin (PRL) from organ-cultured tilapia pituitary. Eel ghrelin-21 at a dose of 0.1 nM stimulated the release of GH and PRL, indicating that ghrelin acts directly on the pituitary. The present study revealed that ghrelin is present in fish stomach and has the ability to stimulate the secretion of GH from fish pituitary. A novel regulatory pathway of GH secretion by gastric ghrelin seems to be conserved from fish to human.
T Akamizu, T Murayama, S Teramukai, K Miura, I Bando, T Irako, H Iwakura, H Ariyasu, H Hosoda, H Tada, A Matsuyama, S Kojima, T Wada, Y Wakatsuki, K Matsubayashi, T Kawakita, A Shimizu, M Fukushima, M Yokode, and K Kangawa
Aging is associated with a decrease in growth hormone (GH) secretion, appetite and energy intake. As ghrelin stimulates both GH secretion and appetite, reductions in ghrelin levels may be involved in the reductions in GH secretion and appetite observed in the elderly. However, only preliminary studies have been performed on the role of ghrelin in elderly subjects. In this study, we sought to clarify the physiologic implications of the age-related alterations in ghrelin secretion by determining plasma ghrelin levels and other clinical parameters in healthy elderly subjects. Subjects were ≥ 65 years old, corresponding to the SENIEUR protocol, had not had a resection of the upper gastrointestinal tract and had not been treated with hormones. One hundred and five volunteers (49 men and 56 women) were admitted to this study (73.4 ± 6.3 years old). Plasma levels of acylated ghrelin in elderly female subjects positively correlated with serum IGF-I levels and bowel movement frequency and negatively with systolic blood pressure. In elderly men, desacyl ghrelin levels correlated only weakly with bowel movement frequency. These findings suggest that the plasma levels of the acylated form of ghrelin may influence the age-related alterations in GH/IGF-I regulation, blood pressure and bowel motility. These observational associations warrant further experimental studies to clarify the physiologic significance of these effects.