Search Results

You are looking at 1 - 1 of 1 items for

  • Author: T Inaba x
  • Refine by Access: All content x
Clear All Modify Search
Free access

H Tamada, Y Shimizu, T Inaba, N Kawate, and T Sawada

It is well known that progesterone and estrogen are essential hormones for maintaining pregnancy in most mammals. Some specific roles of progesterone for the maintenance of pregnancy have been clarified, but the role of estrogen is not well known. This study examines the effects of the aromatase inhibitor, fadrozole hydrochloride (Fad), on fetuses, uterine physical properties and the mRNA expression of the uterine enzymes that are related to collagen metabolism during late pregnancy in rats. Continuous s.c. infusion with 300 micro g/day Fad from day 14 of pregnancy (day 1=the day of sperm detection) reduced the concentration of plasma estradiol-17beta (E(2)), and did not change that of plasma progesterone, compared with controls. The treatment increased the intrauterine pressure and reduced the size and compliance of the uterine tissue framework. It also caused injuries (hematomata on the extremities) in about one-quarter of fetuses by day 20. The collagen content of the uterine ampullae was not changed by the treatment. Uterine mRNA expressions of matrix metalloproteinase-1 (MMP-1), which degrades collagens, and of lysyl oxidase (LO), which is necessary for the formation of intra- and inter-molecular cross-links of collagen, were examined by quantitative RT-PCR. The treatment with Fad had no effect on the expression of MMP-1 mRNA and increased that of LO mRNA. Daily s.c. injection with 0.2 micro g E(2) restored the changes in uterine physical properties and the mRNA expression of LO caused by the Fad treatment, and prevented fetal injury, indicating that the influences of Fad treatment are due to estrogen deficiency but not to toxicological effects of Fad. These results imply that estrogen deficiency during late pregnancy in rats obstructs development of the uterine tissue framework so as to cause fetal injury. It is possible that an increase in the uterine expression of LO gene may be involved in this obstruction.