Search Results

You are looking at 1 - 4 of 4 items for

  • Author: T Kaneko x
  • Refine by Access: All content x
Clear All Modify Search
Free access

S Kajimura, N Kawaguchi, T Kaneko, I Kawazoe, T Hirano, N Visitacion, EG Grau, and K Aida

There is considerable evidence that the GH/IGF-I axis plays an important role in female reproduction. We report the isolation and characterization of the GH receptor (GH-R) and its gene expression profile during oogenesis in the tilapia, Oreochromis mossambicus. cDNA encoding GH-R was cloned and sequenced from the tilapia liver. The predicted GH-R preprotein consisted of 635 amino acids and contained a putative signal peptide, an extracellular region with a characteristic motif, a single transmembrane region, and a cytoplasmic region with conserved box 1 and 2 domains. The tilapia GH-R shared 34-74% identities with known GH-Rs in vertebrates. A binding assay using COS-7 cells showed that the cloned GH-R bound specifically to tilapia GH. Northern blot analysis showed a single mRNA transcript in the liver and ovary. In situ hybridization revealed intense signals of GH-R in the cytoplasm and nucleus of immature oocytes. The granulosa and theca cells surrounding vitellogenic oocytes also contained the GH-R mRNA signals. About a tenfold greater level of GH-R mRNA was found in the immature oocytes versus the mature oocytes, along with high levels of IGF-I mRNA. There were no significant changes in mRNA levels of GH-R and IGF-I in the liver or in plasma IGF-I levels during oocyte development. No correlation was found between hepatic GH-R mRNA and ovarian GH-R mRNA. These results suggest that the GH/IGF-I axis in the ovary may be involved in the early phases of oogenesis, under a different regulatory mechanism of GH-R gene expression from that of the liver.

Free access

K Ichikawa, T Miyamoto, T Kakizawa, S Suzuki, A Kaneko, J Mori, M Hara, M Kumagai, T Takeda, and K Hashizume

The thyromimetic compound SK&F L-94901 shows more potent thyromimetic activity in the liver than in the pituitary gland or heart when administered to rats. The mechanisms of liver-selectivity of SK&F L-94901 were examined using cultured rat hepatoma cells (dRLH-84) and rat pituitary tumor cells (GH3), both of which showed saturable cellular uptake of tri-iodothyronine (T(3)). When isolated nuclei with partial disruption of the outer nuclear membrane were used, SK L-94901 competed for [(125)I]T(3) binding to nuclear receptors almost equally in dRLH-84 and GH3 cells. SK L-94901 also did not discriminate thyroid hormone receptors (TR) alpha1 and beta1 in terms of binding affinity and activation of the thyroid hormone responsive element. In intact cells, however, SK L-94901 was a more potent inhibitor of nuclear [(125)I]T(3) binding in dRLH-84 cells than in GH3 cells at an early phase of the nuclear uptake process and after binding equilibrium. These data suggest that SK L-94901 is more effectively transported to nuclear TRs in hepatic cells than in pituitary cells and therefore shows liver-selective thyromimetic activity. In conclusion, SK L-94901 discriminates hepatic cells and pituitary cells at the nuclear transport process. The cellular transporters responsible for this discrimination were not evident.

Free access

T Aizawa, T Kaneko, H Yajima, S Yamada, Y Sato, Y Kanda, S Kanda, M Noda, T Kadowaki, M Nagai, K Yamauchi, M Komatsu, and K Hashizume

Oscillation of insulin release by the pancreatic islets was evaluated under stringent Ca(2+)-free conditions for the first time. Isolated single rat islets were exposed to 16.7 mM glucose in the presence of 1.9 mM Ca(2+), or under the stringent Ca(2+)-free conditions (Ca(2+) omission with 1 mM EGTA, 6 microM forskolin and 100 nM phorbol 12-myristate 13-acetate). Fifteen minutes after the initiation of glucose stimulation, effluent was collected at a 6-s interval, insulin was determined in duplicate by a highly sensitive insulin radioimmunoassay, and oscillation and pulsatility of release statistically analyzed. Significant oscillation of insulin release was observed in all islets irrespective of presence and absence of Ca(2+). Significant pulsatility of release was detected in 7 of 11 islets in the presence of Ca(2+) and three of six isl! ets in the absence of Ca(2+). In conclusion, high glucose elicits oscillatory insulin release both in the presence and absence of extracellular Ca(2+).

Free access

Jason P Breves, Mayu Inokuchi, Yoko Yamaguchi, Andre P Seale, Bethany L Hunt, Soichi Watanabe, Darren T Lerner, Toyoji Kaneko, and E Gordon Grau

Aquaporins (Aqps) are expressed within key osmoregulatory tissues where they mediate the movement of water and selected solutes across cell membranes. We leveraged the functional plasticity of Mozambique tilapia (Oreochromis mossambicus) gill epithelium to examine how Aqp3, an aquaglyceroporin, is regulated in response to osmoregulatory demands. Particular attention was paid to the actions of critical osmoregulatory hormones, namely, prolactin (Prl), growth hormone and cortisol. Branchial aqp3 mRNA levels were modulated following changes in environmental salinity, with enhanced aqp3 mRNA expression upon transfer from seawater to freshwater (FW). Accordingly, extensive Aqp3 immunoreactivity was localized to cell membranes of branchial epithelium in FW-acclimated animals. Upon transferring hypophysectomized tilapia to FW, we identified that a pituitary factor(s) is required for Aqp3 expression in FW. Replacement with ovine Prl (oPrl) was sufficient to stimulate Aqp3 expression in hypophysectomized animals held in FW, an effect blocked by coinjection with cortisol. Both oPrl and native tilapia Prls (tPrl177 and tPrl188) stimulated aqp3 in incubated gill filaments in a concentration-related manner. Consistent with in vivo responses, coincubation with cortisol blocked oPrl-stimulated aqp3 expression in vitro. Our data indicate that Prl and cortisol act directly upon branchial epithelium to regulate Aqp3 in tilapia. Thus, within the context of the diverse actions of Prl on hydromineral balance in vertebrates, we define a new role for Prl as a regulator of Aqp expression.