Although calcitonin has been clinically utilized as a primary treatment for several metabolic bone diseases, its inhibitory effects against osteoclastic function diminish after several days owing to the calcitonin 'escape phenomenon'. We have previously found a unique cell-surface antigen (Kat1-antigen) expressed on rat osteoclasts. Here we show evidence that, in the presence of calcitonin, the Kat1-antigen is involved in osteoclastogenesis. Treatment of bone marrow cultures for forming osteoclast-like cells with anti-Kat1-antigen monoclonal antibody (mAb Kat1) provoked a marked stimulation of osteoclast-like cell formation only in the presence of calcitonin but not in its absence. Osteoclastogenesis stimulated by the receptor activator of nuclear factor kappa B (NF-kappaB) ligand/osteoclast differentiation factor was further augmented by mAb Kat1 in the presence of calcitonin. Furthermore, even in the presence of the osteoprotegerin/osteoclast inhibitory factor, mAb Kat1 induced osteoclast-like cell formation. Our current data suggest that the Kat1-antigen is a molecule that is distinct from receptor activator of NF-kappaB. The presence of the unique Kat1-antigen on cells in the osteoclast lineage appears to contribute to the fine regulation of osteoclastogenesis in vivo. Expression of this cell-surface molecule in cells in the osteoclast lineage may partly explain the mechanism responsible for the escape phenomenon.
Search Results
You are looking at 1 - 10 of 17 items for
- Author: T Watanabe x
- Refine by Access: All content x
T Kukita, A Kukita, T Watanabe, and T Iijima
T Watanabe, T Kukita, A Kukita, N Wada, K Toh, K Nagata, H Nomiyama, and T Iijima
Macrophage inflammatory protein-1alpha (MIP-1alpha) is a member of the CC chemokines. We have previously reported the use of a whole bone marrow culture system to show that MIP-1alpha stimulates the formation of osteoclast-like multinucleated cells. Here we use rat bone marrow cells deprived of stromal cells, and clones obtained from murine macrophage-like cell line RAW264 to show that MIP-1alpha acts directly on cells in osteoclast lineage. We obtained several types of RAW264 cell clones, one of these clones, designated as RAW264 cell D clone (D clone), showed an extremely high response to receptor activator of NFkappaB ligand (RANKL) and tumor necrosis factor-alpha (TNF-alpha), while the other clone, RAW264 cell N clone (N clone), demonstrated no response to RANKL or TNF-alpha. Although both clones expressed receptor activator NFkappaB (RANK) before being stimulated for differentiation, only the D clone expressed cathepsin K when cells were stimulated to differentiate to osteoclasts. MIP-1alpha stimulated the formation of mononuclear preosteoclast-like cells from rat bone marrow cells deprived of stromal cells. MIP-1alpha also stimulated formation of osteoclast-like multinucleated cells from the D clone, when these cells were stimulated with RANKL and TNF-alpha. These findings provide strong evidence to show that MIP-1alpha acts directly on cells in the osteoclast lineage to stimulate osteoclastogenesis. Furthermore, pretreatment of RAW264 cell D clone with MIP-1alpha significantly induced adhesion properties of these cells to primary osteoblasts, suggesting a crucial role for MIP-1alpha in the regulation of the interaction between osteoclast precursors and osteoblasts in osteoclastogenesis.
Y. Takei, Y. Hasegawa, T. X. Watanabe, K. Nakajima, and N. Hazon
ABSTRACT
It is believed that the renin-angiotensin system evolved initially in primitive bony fishes and is absent from elasmobranchs. We have isolated angiotensin I from the incubates of plasma and kidney extracts of an elasmobranch fish, Triakis scyllia, using eel vasopressor activity as an assay system. Its sequence was determined to be H-Asn-Arg-Pro-Tyr-Ile-His-ProPhe-Gln-Leu-OH. Dogfish angiotensin I is teleost-like because of an asparagine residue at position 1 but it is mammalian-like because of an isoleucine residue at position 5. The unique and most important substitution in dogfish angiotensin I is a proline residue at position 3 which may cause significant changes in its tertiary structure. A glutamine residue at position 9 is also unique among all angiotensin Is sequenced to date. Dogfish angiotensin I is more potent than rat angiotensin I in its vasopressor activity in the dogfish but the relationship is reversed in the rat. Thus angiotensin receptors as well as the hormone molecules appear to have evolved during vertebrate phylogeny. Our findings establish the elasmobranch renin-angiotensin system and support the hypothesis that the renin-angiotensin system is a phylogenetically old hormonal system which plays important roles in cardiovascular and fluid homeostasis.
Journal of Endocrinology (1993) 139, 281–285
Y Takei, A Takahashi, T X Watanabe, K Nakajima, and K Ando
Abstract
Ventricular natriuretic peptide (VNP) with 25 amino acid residues was isolated from the low molecular weight fraction of acid extracts of eel cardiac ventricles. No other short forms of VNP were recovered from the fraction. This peptide was named eel VNP(1–25) because it was a C-terminally truncated form of the previously isolated eel VNP(1–36) As observed before with eel VNP(1–36), eel VNP(1–25) had a much higher (146-fold) vasodepressor activity than human atrial natriuretic peptide (ANP) in eels, but was a third to a half as active in rats with respect to vasodepressor and natriuretic activities. Eel VNP(1–25) was generally less potent than eel VNP(1–36) for vasodepressor and natriuretic effects.
A specific radioimmunoassay (RIA) has been developed for the measurement of eel VNP. The antiserum, raised against eel VNP(1–36), was highly specific and did not exhibit significant cross-reactivity with eel ANP and C-type natriuretic peptide, even though their amino acid sequences have more than 60% homology with that of eel VNP. The sensitivity of assay was 0·5 fmol/tube for eel VNP(1–36) with more than 99% confidence. Such high sensitivity permitted direct assaying of VNP with only a few microlitres of plasma.
In fresh water eels, the concentration of VNP in the cardiac ventricle was higher than those in the atrium or brain and that of ANP in the ventricle. Thus, VNP seems to be a ventricular hormone. Although ANP is a major circulating hormone in mammals, the plasma concentration of VNP was threefold higher than that of ANP. The RIA coupled with gel-permeation chromatography revealed that a 14 kDa form, probably proVNP, and smaller forms (3–6 kDa) circulate in eel plasma. Reversephase high performance liquid chromatography identified both VNP(1–36) and VNP(1–25) in eel plasma; VNP(1–36) appeared to be a major form.
Journal of Endocrinology (1994) 141, 81–89
T. Endo, H. Watanabe, H. Yamamoto, S. Tanaka, and M. Hashimoto
ABSTRACT
While prostaglandin F2α (PGF2α) has been thought to be a natural luteolysin in non-primates, a luteolytic effect in the human corpus luteum is less evident. We therefore investigated the action of PGF2α on monolayer cultures of human luteal cells obtained from mid-luteal phase corpora lutea.
PGF2α increased basal and human chorionic gonadotrophin (hCG)-stimulated progesterone production by human cultured luteal cells. A potent tumour-promoting phorbol ester, phorbol 12-myristate-13-acetate (PMA), also stimulated progesterone production by cultured human luteal cells.
Although human luteal cells were incubated for 24 h with PMA, hCG was still able to stimulate the production of progesterone by PMA-pretreated cells. However, PMA pretreatment blocked the ability of PGF2α to stimulate progesterone production. It is possible that the luteotrophic effect of PGF2α may be mediated, in part, by the activation of protein kinase C.
Addition of PGF2α to suspensions of human luteal cells preincubated with myo-[2-3H]inositol promoted an increase in labelled inositol phosphates. PGF2α also rapidly increased intracellular free Ca2+ in human luteal cells loaded with the fluorescent Ca2+ probe, fura-2.
We conclude that PGF2α and PMA stimulate progesterone production and that PGF2α increases the intracellular free calcium and inositol phosphates of human cultured luteal cells in the mid-luteal phase.
Journal of Endocrinology (1992) 133, 451–458
H. Shimura, T. Endo, G. Tsujimoto, K. Watanabe, K. Hashimoto, and T. Onaya
ABSTRACT
We have characterized α1-adrenergic receptor subtypes in functional rat thyroid cells, FRTL, with relation to iodide efflux, and have also examined the effect of TSH on α1 receptor subtypes. FRTL cells grown in a medium containing 5 mU TSH/ml (6H cells) had five times the number of α1 receptors of those maintained in TSH-free medium (5H cells) (11·2 fmol/106 cells compared with 2·0 fmol/106 cells). Pretreatment with chlorethylclonidine (CEC; 10 μmol/l), which inactivates only α1b receptors, caused 98·8% and 97·0% decreases in the density of specific [3H]prazosin-binding sites in 5H and 6H cells respectively. LIGAND computer program analysis of the displacement curves for 2-(2,6-dimethoxyphenoxyethyl)-aminomethyl-1,4 benzodioxane (WB4101) showed that FRTL cells contained mostly low-affinity WB4101 sites. Using the phenoxybenzamine inactivation method, we found a linear relationship between α1 receptor density and the cytosolic free Ca2+ concentration response in FRTL cells. Pre-exposure of intact FRTL cells to CEC caused a 98·7% decrease in noradrenaline-stimulated maximal increase in cytosolic free Ca2+. Also, CEC and 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (TMB-8), but not nicardipine, inhibited noradrenaline-stimulated iodine efflux. The results suggest that FRTL cells contain mostly the α1b-adrenergic receptor subtype; that the α1b receptors mediate cytosolic free Ca2+ and iodide efflux responses, and that TSH enhances these responses by increasing the α1b receptor density without affecting the post-receptor mechanism.
Journal of Endocrinology (1990) 124, 433–441
T. Hamada, G. Watanabe, T. Kokuho, K. Taya, S. Sasamoto, Y. Hasegawa, K. Miyamoto, and M. Igarashi
ABSTRACT
A sensitive radioimmunoassay (RIA) for the determination of inhibin in peripheral plasma and tissue homogenates of different species has been developed using antisera to partially purified bovine follicular fluid (bFF) inhibin and 125I-labelled bFF 32 kDa inhibin. Antisera were produced by immunization of rabbits with partially purified bFF inhibin prepared by immunoaffinity chromatography. Increasing doses of a high titre antiserum could neutralize the suppressing effect of bFF, porcine follicular fluid and rat ovarian homogenate on FSH secretion from rat anterior pituitary cells in culture. Sensitivity of the assay was 3·1 ng International Research Standard of porcine inhibin per tube. Parallel inhibition curves were obtained for inhibin preparations from female and male animals of ten species, i.e. cattle, goats, sheep, cats, dogs, monkeys, pigs, horses, rats and man. Inhibin subunits and related proteins cross-reacted minimally with the antiserum used in the study. Plasma concentrations of inhibin in adult male and female rats were measured by the RIA before and at various times after gonadectomy. Inhibin levels in peripheral plasma before gonadectomy were significantly higher in adult female than in adult male rats. Inhibin levels decreased abruptly after gonadectomy in both sexes and they correlated negatively with plasma concentrations of FSH. This inhibin RIA will facilitate studies of the physiology of inhibin in various species of animals.
Journal of Endocrinology (1989) 122, 697–704
H Kishi, T Okada, M Otsuka, G Watanabe, K Taya, and S Sasamoto
Abstract
The present study was conducted to study the effect of immunoneutralization against endogenous inhibin on FSH, LH, oestradiol-17β and progesterone secretion and to investigate the effect of removal of endogenous inhibin on subsequent follicular development in the hamster. After treatment with anti-inhibin serum (inhibin-AS) at 1100 h on day 2 of the oestrous cycle (day 1=day of ovulation), a marked increase in plasma levels of FSH and a slight increase in plasma levels of LH were noted and pituitary contents of FSH, but not LH, were also increased. In the group treated with inhibin-AS, superovulation occurred on day 1 of the following cycle. Plasma levels of oestradiol-17β markedly increased with the increase in the number of ovulations induced by human chorionic gonadotrophin (hCG) as compared with those in control animals. In the second cycle, plasma concentrations and pituitary contents of FSH in the animals given 200 μl inhibin-AS still showed high values as compared with those in the animals treated with control serum, although superovulation did not occur on day 1 of the third cycle. Plasma concentrations and pituitary contents of LH in the hamster given 200 μl inhibin-AS tended to decrease as compared with those in control animals during the second cycle. Plasma concentrations of oestradiol-17β in the animals treated with 200 μl inhibin-AS changed in a similar way to controls. A marked increase in plasma concentrations of progesterone was noted on days 1 and 2 of the second cycle in the group receiving inhibin-AS. The twice daily injection of 1 IU hCG during the second cycle to the animals given 200 μl inhibin-AS induced superovulation on day 1 of the third cycle.
These results indicate that circulating inhibin may be an important indicator of the number of developing follicles and may maintain the species-specific number of developing follicles through suppression of FSH secretion in the cyclic hamster. They also suggest that high levels of inhibin slightly suppress plasma levels of LH, indicating that plasma LH may also regulate follicular development in the cyclic hamster.
Journal of Endocrinology (1996) 151, 65–75
C. Bjenning, Y. Takei, T.X. Watanabe, K. Nakajima, S. Sakakibara, and N. Hazon
ABSTRACT
The effects of an elasmbranch cardiac C-type natriuretic peptide (dogfish CNP-22) on arterial blood pressure were investigated in vivo in chronically cannulated dogfish Scyliorhinus canicula and in vitro by a myographic technique using the distal part of the first branchial artery. In-vivo dogfish CNP-22 caused a dose-dependent reduction in mean arterial blood pressure which was much more potent than that of α-human ANP. In-vitro dogfish CNP-22 also caused a dose-dependent relaxation which was independent of the endothelium. These results are in marked contrast to those obtained in similar studies on other vertebrate species in which CNP exhibited only mild hypotensive effects compared to both atrial and brain natriuretic peptides. This study indicates the importance of using homologous peptides in determing the physiological role of natriuretic peptides in non-mammalian vertebrates.
T Yoshida, K Yamanaka, S Atsumi, H Tsumura, R Sasaki, K Tomita, E Ishikawa, H Ozawa, K Watanabe, and T Totsuka
Abstract
This paper describes a novel mutant mouse that has been spontaneously derived from the Snell's dwarf (DW/J) mouse. It was named the 'growth-retarded mouse' because of a characteristic growth pause followed by the delayed onset of pubertal growth. The onset of the increase in pituitary GH content that normally occurs concomitant with pubertal growth was also delayed in the growth-retarded mice. The serum concentration of thyroxine was very low in these mice from the neonatal period through adulthood, and a supplement of tri-iodothyronine was effective in shortening the growth pause and commencing the suppressed pubertal growth. Histological and immunohistochemical studies revealed that the anterior pituitary gland of the growth-retarded mouse contains clustered unusual chromophobic cells which are not reactive to various antisera against anterior pituitary hormones and the gland becomes enlarged with age. Breeding data indicated that these characteristics of the mice show an autosomal recessive inheritance and the gene responsible was designated as 'grm'. Partial linkage analysis utilizing microsatellite polymorphism demonstrated that the grm gene does not identify with the lit or hyt genes. Based on comparison of the hormonal status and growth pattern between growth-retarded, dwarf and normal mice, we have suggested the existence of a mutual interaction, possibly positive feedback regulation, between the pituitary and thyroid glands, that develops or matures the hormonal network which is responsible for rapid somatic growth and metabolic changes at puberty in mice.
Journal of Endocrinology (1994) 142, 435–446