Search Results
You are looking at 1 - 10 of 13 items for
- Author: T. Kobayashi x
- Refine by access: All content x
Search for other papers by T. YAGINUMA in
Google Scholar
PubMed
Search for other papers by T. KIGAWA in
Google Scholar
PubMed
Search for other papers by T. KOBAYASHI in
Google Scholar
PubMed
Experiments previously reported (Yaginuma, Matsuda, Murasawa, Kobayashi & Kobayashi, 1969) demonstrated that hemicastration on day 0 of life increased the weight of the remaining testis of the rat 72 hr. after the operation. Such an effect might be caused by the secretion of interstitial cell-stimulating hormone and this suggested that the hypothalamo-pituitary testicular axis already functions during the first 3 days of life. Recently, Resko, Feder & Goy (1968) showed that testosterone was present in plasma and testicular tissue during the period from day 0 to day 30 of life. Therefore, the present study was undertaken to ascertain whether the hypothalamo-pituitary testicular axis also functions during the late neonatal period.
Rats of the Wistar strain were used. Litters from eight rats were reduced to 8–9 male or 6 female pups soon after birth. On day 5 or day 15 of life, left hemicastration was performed through a lower abdominal incision
Search for other papers by M. Mori in
Google Scholar
PubMed
Search for other papers by M. Murakami in
Google Scholar
PubMed
Search for other papers by T. Iriuchijima in
Google Scholar
PubMed
Search for other papers by H. Ishihara in
Google Scholar
PubMed
Search for other papers by I. Kobayashi in
Google Scholar
PubMed
Search for other papers by S. Kobayashi in
Google Scholar
PubMed
Search for other papers by K. Wakabayashi in
Google Scholar
PubMed
ABSTRACT
An influence of thyrotrophin-releasing hormone (TRH) on TSH heterogeneity in close association with de-novo biosynthesis was studied in rat anterior pituitary glands. Hemipituitary glands from adult male rats were incubated in Krebs–Henseleit–glucose media containing [3H]glucosamine and [14C]alanine for 3 and 6 h in the presence or absence of 10 ng TRH per ml. Fractions of TSH in the pituitary extracts were obtained using affinity chromatography coupled with an anti-rat TSH globulin. These TSH fractions were analysed by isoelectric focusing. The control pituitary glands were composed of four component peaks (isoelectric point (pI) 8·7, 7·8, 5·3 and 2·5) of [3H]glucosamine and [14C]alanine incorporated into TSH, and the amounts of radioactivity of these components were increased with the incubation time. Of these peaks, radioactive components of pI 8·7 and 7·8 coincided with the non-radioactive TSH components measured by radioimmunoassay. Addition of TRH increased incorporation of [14C]alanine into TSH in each of the components to a greater extent than that of [3H]glucosamine. In addition, new components with pI 7·2, 6·5 and 6·2, each component corresponding to each unlabelled TSH component, were demonstrated in the presence of TRH. Because addition of TRH did not change the amounts of [14C]alanine-labelled TSH in the media, the newly formed components were assumed to be connected with protein synthesis occurring in the anterior pituitary gland, which may be specific substances in response to TRH administration. These results indicate that TRH principally elicits an increase in protein synthesis in TSH at the anterior pituitary level, resulting in an alteration of TSH heterogeneity.
J. Endocr. (1984) 103, 165–171
Search for other papers by T Kobayashi in
Google Scholar
PubMed
Search for other papers by O Ushijima in
Google Scholar
PubMed
Search for other papers by J-T Chen in
Google Scholar
PubMed
Search for other papers by M Shiraki in
Google Scholar
PubMed
Search for other papers by T Ohta in
Google Scholar
PubMed
Search for other papers by M Kiyoki in
Google Scholar
PubMed
Abstract
Hyper-release of calcitonin gene-related peptide (CGRP) plays a direct and pivotal role in the induction of menopausal hot flushes (HFs), in which a drastic increase in skin temperature occurs. However, it is not possible to investigate whether CGRP induces skin temperature increase and whether skin temperature response to CGRP changes and contributes to the occurrence of HFs in postmenopausal women who are in oestrogen deficiency. By using rats' tail skin temperature (TST), a good marker to evaluate skin temperature regulation, we examined the effects of CGRP and calcitonin (3, 10 and 30 μg/kg, i.v.) on TST in female rats and further investigated the TST change induced by CGRP (10 μg/kg, i.v.) in ovariectomized (OVX) rats compared with that in sham-operated (Sham) rats. We found that CGRP, but not calcitonin, induced a TST increase in a dose-dependent manner and that the TST change induced by CGRP (0·6 ±0·2 °C for OVX rats vs 0·3 ±0·1 °C for Sham rats, P<0·05) and also the basal TST (26·0 ± 0·2 °C for OVX rats vs 25·5 ±0·1 °C for Sham rats) were significantly greater in OVX rats (P<0·05). Furthermore, treatment with oestradiol (30 μg/kg, s.c.) for 8 days partially inhibited the augmented TST response to CGRP in OVX rats and almost completely inhibited (P<0·05) the basal TST elevation, with the concomitant recovery of the serum oestradiol level to that in Sham rats. These results suggest that the augmented skin temperature response to CGRP and the elevation of basal skin temperature that are found in OVX rats, animals which are oestradiol deficient, may also occur in menopausal women and contribute to their HFs.
Journal of Endocrinology (1995) 146, 431–437
Search for other papers by GW Sun in
Google Scholar
PubMed
Search for other papers by H Kobayashi in
Google Scholar
PubMed
Search for other papers by M Suzuki in
Google Scholar
PubMed
Search for other papers by N Kanayama in
Google Scholar
PubMed
Search for other papers by T Terao in
Google Scholar
PubMed
Link protein (LP), an extracellular matrix protein in cartilage, stabilizes aggregates of hyaluronic acid (HA) and proteoglycans, including aggrecan and inter-alpha-trypsin inhibitor (ITI). We have shown previously that cartilage LP is present in the maturing rat and mouse ovary. In the present study, we have employed immunohistochemistry to examine the anatomical distribution of cartilage LP in the human ovary. The expression of cartilage LP was selectively detected in the cells within the granulosa compartment of the preovulatory dominant follicle. The HA-positive granulosa-lutein cells were found to be a cartilage LP-positive subpopulation. We subsequently studied the in vitro expression of cartilage LP in cultured human granulosa-lutein cells obtained at oocyte retrieval for in vitro fertilization. Analysis of cultured cells by enzyme-linked immunoaffinity assay, Western blotting and immunofluorescence microscopy revealed that gonadotropin stimulates cartilage LP production. Time-course studies indicated that the cartilage LP production was induced as early as with gonadotropin stimulation for 2 h, and the effect was sustained up to 8 h. Western blot analysis further revealed the presence of the macroaggregates composed of HA, ITI and cartilage LP in the gonadotropin-stimulated granulosa-lutein cell extracts. Collectively, the present results raise the possibility that cartilage LP forms extracellular structures that may have a regulatory function in the developing follicle in the human ovary.
Search for other papers by O. Carnevali in
Google Scholar
PubMed
Search for other papers by G. Mosconi in
Google Scholar
PubMed
Search for other papers by K. Yamamoto in
Google Scholar
PubMed
Search for other papers by T. Kobayashi in
Google Scholar
PubMed
Search for other papers by S. Kikuyama in
Google Scholar
PubMed
Search for other papers by A. M. Polzonetti-Magni in
Google Scholar
PubMed
ABSTRACT
Male and female Rana esculenta liver was induced in an in-vitro system by homologous and Rana catesbeiana pituitary to synthesize and release vitellogenin, a lipoglycophosphoprotein precursor of yolk proteins, lipovitellins and phosvitins, in oviparous vertebrates.
In the present experiments, the action of prolactin on hepatic vitellogenin synthesis and release was investigated, using ovine prolactin and Rana catesbeiana prolactin. The effects of prolactin on hepatic vitellogenin synthesis displayed different trends related to sex; male liver was found to be more responsive than female liver to both ovine and frog prolactin; moreover, the response to prolactin was dose-related (r = 0·998; P <0·05) in male but not in female liver. In both sexes, a high degree of seasonality in the responsiveness of the liver was found, since the vitellogenin levels induced by prolactin during the winter phase were significantly (P < 0·001) higher than those produced during the summer phase. Thus, there was no significant difference between the action of ovine and frog prolactin on vitellogenin synthesis; in fact, mammalian prolactins are structurally similar with regard to nucleotide and amino acid sequences.
The direct action of prolactin on hepatic vitellogenin synthesis in the frog Rana esculenta is discussed, on the basis of the role played by prolactin as an important growth modulatory hormone in fetal and adult tissues.
Journal of Endocrinology (1993) 137, 383–389
Feed Functionality Research Laboratory, Meiji Feed Co., Kashima, Ibaraki 314-0103, Japan
Search for other papers by K Katoh in
Google Scholar
PubMed
Feed Functionality Research Laboratory, Meiji Feed Co., Kashima, Ibaraki 314-0103, Japan
Search for other papers by K Yoshioka in
Google Scholar
PubMed
Feed Functionality Research Laboratory, Meiji Feed Co., Kashima, Ibaraki 314-0103, Japan
Search for other papers by H Hayashi in
Google Scholar
PubMed
Feed Functionality Research Laboratory, Meiji Feed Co., Kashima, Ibaraki 314-0103, Japan
Search for other papers by T Mashiko in
Google Scholar
PubMed
Feed Functionality Research Laboratory, Meiji Feed Co., Kashima, Ibaraki 314-0103, Japan
Search for other papers by M Yoshida in
Google Scholar
PubMed
Feed Functionality Research Laboratory, Meiji Feed Co., Kashima, Ibaraki 314-0103, Japan
Search for other papers by Y Kobayashi in
Google Scholar
PubMed
Feed Functionality Research Laboratory, Meiji Feed Co., Kashima, Ibaraki 314-0103, Japan
Search for other papers by Y Obara in
Google Scholar
PubMed
Postprandial changes in plasma concentrations of GH, insulin, IGF-I, leptin and metabolites were compared between young Holstein bull calves fed with milk alone (control group) and with milk+5′-uridylic acid (UMP) (UMP group). UMP (2 g/day) was given with milk at 0830 h and 1530 h for 11 days from the 4th to the 14th day after birth. The perirenal fat weight was significantly lower in the UMP group than in the control group, but there was no significant difference in the weights of the liver, spleen and heart between the groups. Basal GH concentrations in the UMP group were slightly higher, but the postprandial increase in plasma insulin level and the area under the curve for insulin in the UMP group were significantly lower than those in the control group. There was no significant difference in IGF-I levels between the groups. In addition, the postprandial glucose concentrations were lower in the UMP group as reflected by the insulin level, and nonesterified fatty acid concentrations were not different. In the muscle (M. longissimus thoracis) sampled at 14 days of age, the triacylglycerol (TAG) content was significantly greater but glycogen content was significantly lower in the UMP group than in the control group. From these results, we have concluded that feeding 5′-UMP at 2 g/day for 11 days significantly alters TAG accumulation in the body and plasma concentrations of GH and insulin in young bull calves.
Search for other papers by Y. Nishii in
Google Scholar
PubMed
Search for other papers by K. Hashizume in
Google Scholar
PubMed
Search for other papers by K. Ichikawa in
Google Scholar
PubMed
Search for other papers by T. Miyamoto in
Google Scholar
PubMed
Search for other papers by S. Suzuki in
Google Scholar
PubMed
Search for other papers by T. Takeda in
Google Scholar
PubMed
Search for other papers by K. Yamauchi in
Google Scholar
PubMed
Search for other papers by M. Kobayashi in
Google Scholar
PubMed
Search for other papers by T. Yamada in
Google Scholar
PubMed
ABSTRACT
Changes in the amount of cytosolic 3,5,3′-tri-iodo-l-thyronine (T3)-binding protein (CTBP) and its activator during administration of l-thyroxine (T4) to thyroidectomized rats were investigated. Thyroidectomy decreased the amount of CTBP in the kidney, whereas the activator was not significantly modified by thyroidectomy. The activator was increased by administration of T4 to thyroidectomized rats. The amount of CTBP was also increased by administration of T4. The activator increased the maximal binding capacity (MBC) without changes in the affinity constant for T3 binding in CTBP. A T4-induced increase in MBC in cytosol inhibited nuclear T3 binding in vitro by competition of T3 binding between CTBP and the nuclear receptor.
These results suggest that thyroid hormone increases the capacity for cytosolic T3 binding through increasing the amount of CTBP and its activator, and that these increases play a role in regulating the amount of T3 that binds to its nuclear receptor.
Journal of Endocrinology (1989) 123, 99–104
Search for other papers by T Takahashi in
Google Scholar
PubMed
Search for other papers by K Sato in
Google Scholar
PubMed
Search for other papers by S Kato in
Google Scholar
PubMed
Search for other papers by T Yonezawa in
Google Scholar
PubMed
Search for other papers by Y Kobayashi in
Google Scholar
PubMed
Search for other papers by Y Ohtani in
Google Scholar
PubMed
Search for other papers by S Ohwada in
Google Scholar
PubMed
Search for other papers by H Aso in
Google Scholar
PubMed
Search for other papers by T Yamaguchi in
Google Scholar
PubMed
Search for other papers by S G Roh in
Google Scholar
PubMed
Search for other papers by K Katoh in
Google Scholar
PubMed
Ghrelin is a multifunctional peptide that promotes an increase of food intake and stimulates GH secretion. Ghrelin secretion is regulated by nutritional status and nutrients. Although a high-protein (HP) diet increases plasma ghrelin secretion in mammals, the mechanisms and the roles of the elevated ghrelin concentrations due to a HP diet have not been fully established. To clarify the roles of elevated acylated ghrelin upon intake of a HP diet, we investigated the regulation of ghrelin concentrations in plasma and tissues in wethers fed with either the HP diet or the control (CNT) diet for 14 days, and examined the action of the elevated plasma ghrelin by using a ghrelin-receptor antagonist. The HP diet gradually increased the plasma acylated-ghrelin concentrations, but the CNT diet did not. Although the GH concentrations did not vary significantly across the groups, an injection of ghrelin-receptor antagonist enhanced insulin levels in circulation in the HP diet group. In the fundus region of the stomach, the ghrelin levels did not differ between the HP and CNT diet groups, whereas ghrelin O-acyltransferase mRNA levels were higher in the group fed with HP diet than those of the CNT diet group were. These results indicate that the HP diet elevated the plasma ghrelin levels by increasing its synthesis; this elevation strongly suppresses the appearance of insulin in the circulation of wethers, but it is not involved in GH secretion. Overall, our findings indicate a role of endogenous ghrelin action in secretion of insulin, which acts as a regulator after the consumption of a HP diet.
Search for other papers by T Takeda in
Google Scholar
PubMed
Search for other papers by K Ichikawa in
Google Scholar
PubMed
Search for other papers by M Kobayashi in
Google Scholar
PubMed
Search for other papers by T Miyamoto in
Google Scholar
PubMed
Search for other papers by S Suzuki in
Google Scholar
PubMed
Search for other papers by Y Nishii in
Google Scholar
PubMed
Search for other papers by A Sakurai in
Google Scholar
PubMed
Search for other papers by T Nagasawa in
Google Scholar
PubMed
Search for other papers by M Katai in
Google Scholar
PubMed
Search for other papers by K Nakajima in
Google Scholar
PubMed
Search for other papers by K Hashizume in
Google Scholar
PubMed
Abstract
In order to study whether peripheral action of thyroid hormones is altered in insulin deficiency and to elucidate the biological consequences of alteration of the cytosolic 3,5,3′-tri-iodo-l-thyronine (T3) binding protein (CTBP), we measured malic enzyme, T3-responsive nuclear n protein, CTBP and nuclear thyroid hormone receptor in the liver and kidney of streptozotocin (STZ)-induced diabetic rats that were treated with or without insulin and/or a receptor-saturating dose of T3. The following results were obtained. 1. Induction of malic enzyme by T3 was apparently diminished in diabetic rats. However, supplementary injection of insulin enabled previously given T3 to take effect in diabetic rats. 2. T3-responsiveness of other hepatic proteins (n protein and CTBP) was not altered by insulin in diabetic rats. 3. The level of n protein was increased by insulin in diabetic rats in vivo and in perfused rat liver, indicating that the hepatic n protein is a novel insulin-responsive protein. T3 and insulin increased the level of n protein non-synergistically in diabetic rat liver. 4. Hepatic nuclear receptor levels were not altered in diabetic rats. 5. Hepatic CTBP levels were decreased in diabetic rats. This was not due to the toxic effect of STZ. Low CTBP level was only partially increased by insulin after 30 days of diabetic period. Renal CTBP levels were not altered in diabetic rats with or without insulin treatment. These results indicate that reduction of CTBP did not influence the hepatic response to a receptor-saturating dose of T3, although CTBP may regulate the nuclear T3 transport, and that fundamental action of a receptor-saturating dose of T3 was not attenuated in diabetic rat liver.
Journal of Endocrinology (1994) 143, 55–63
Search for other papers by Y Itoh in
Google Scholar
PubMed
Search for other papers by S Imamura in
Google Scholar
PubMed
Search for other papers by K Yamamoto in
Google Scholar
PubMed
Search for other papers by Y Ono in
Google Scholar
PubMed
Search for other papers by M Nagata in
Google Scholar
PubMed
Search for other papers by T Kobayashi in
Google Scholar
PubMed
Search for other papers by T Kato in
Google Scholar
PubMed
Search for other papers by M Tomita in
Google Scholar
PubMed
Search for other papers by A Nakai in
Google Scholar
PubMed
Search for other papers by M Itoh in
Google Scholar
PubMed
Search for other papers by A Nagasaka in
Google Scholar
PubMed
Endothelin-1 (ET-1) concentrations are increased in patients with diabetes mellitus, particularly those with diabetic retinopathy, or essential hypertension. We hypothesized that ET-1 might participate in the development and progression of diabetic microangiopathy. In this study, the effects of the angiotensin converting enzyme (ACE) inhibitor, enalapril maleate, on diabetic angiopathy were examined in streptozotocin (STZ)-induced diabetic (STZ-DM) rats by monitoring variations in renal function and ET-1 concentrations in blood and organ tissues. Significant increases in kidney weight and in concentrations of urinary albumin, N-acetyl-fl-d-glucosamidase (NAG) and serum ET-1 were observed in the STZ-DM rats as compared with the non-diabetic rats, and the concentration of ET-1 in the kidneys tended to be increased. Microscopic and electron microscopic analyses showed increased mesangial cell proliferation, matrix expansion and enlarged mesangial area in the kidney of the diabetic rats. After administration of the ACE inhibitor, increased concentrations of urinary albumin and NAG in the STZ-DM rats were reduced to the control values with a slight improvement in the electron microscopic changes. These data suggest that ET-1 may be involved in the development and progression of diabetic nephropathy and may explain, in part, why diabetes is liable to complicate hypertension. ACE inhibitor may help to restore diabetic nephropathy in the STZ-induced diabetic rats.