Glucocorticoids (Gc) are potent anti-inflammatory agents with wide clinical application. We have previously shown that increased serum concentration significantly attenuates regulation of a simple Gc-responsive reporter. We now find that glucocorticoid receptor (GR) regulation of some endogenous transactivated but not transrepressed genes is impaired, suggesting template specificity. Serum did not directly affect GR expression, activity or trafficking, implicating GR crosstalk with other signalling pathways. Indeed, a JNK inhibitor completely abolished the serum effect. We identified the Gc modulating serum component as cholesterol. Cholesterol loading mimicked the serum effect, which was readily reversed by JNK inhibition. Chelation of serum cholesterol with methyl-β-cyclodextrin or inhibition of cellular cholesterol synthesis with simvastatin potentiated the Gc response. To explore the effect in vivo we used ApoE −/− mice, a model of hypercholesterolaemia. Consistent with our in vitro studies, we find no impact of elevated cholesterol on the expression of GR, or on the hypothalamic–pituitary–adrenal axis, measured by dexamethasone suppression test. Instead we find selective Gc resistance on some hepatic target genes in ApoE −/− mice. Therefore, we have discovered an unexpected role for cholesterol as a selective modulator of Gc action in vivo. Taken together these findings reveal a new environmental constraint on Gc action with relevance to both inflammation and cancer.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: Toryn M Poolman x
- Refine by Access: All content x
Nan Yang, Giorgio Caratti, Louise M Ince, Toryn M Poolman, Peter J Trebble, Cathy M Holt, David W Ray, and Laura C Matthews
Laura L Gathercole, Nikolaos Nikolaou, Shelley E Harris, Anastasia Arvaniti, Toryn M Poolman, Jonathan M Hazlehurst, Denise V Kratschmar, Marijana Todorčević, Ahmad Moolla, Niall Dempster, Ryan C Pink, Michael F Saikali, Liz Bentley, Trevor M Penning, Claes Ohlsson, Carolyn L Cummins, Matti Poutanen, Alex Odermatt, Roger D Cox, and Jeremy W Tomlinson
Steroid 5β-reductase (AKR1D1) plays important role in hepatic bile acid synthesis and glucocorticoid clearance. Bile acids and glucocorticoids are potent metabolic regulators, but whether AKR1D1 controls metabolic phenotype in vivo is unknown. Akr1d1–/– mice were generated on a C57BL/6 background. Liquid chromatography/mass spectrometry, metabolomic and transcriptomic approaches were used to determine effects on glucocorticoid and bile acid homeostasis. Metabolic phenotypes including body weight and composition, lipid homeostasis, glucose tolerance and insulin tolerance were evaluated. Molecular changes were assessed by RNA-Seq and Western blotting. Male Akr1d1–/– mice were challenged with a high fat diet (60% kcal from fat) for 20 weeks. Akr1d1–/– mice had a sex-specific metabolic phenotype. At 30 weeks of age, male, but not female, Akr1d1–/– mice were more insulin tolerant and had reduced lipid accumulation in the liver and adipose tissue yet had hypertriglyceridemia and increased intramuscular triacylglycerol. This phenotype was associated with sexually dimorphic changes in bile acid metabolism and composition but without overt effects on circulating glucocorticoid levels or glucocorticoid-regulated gene expression in the liver. Male Akr1d1–/– mice were not protected against diet-induced obesity and insulin resistance. In conclusion, this study shows that AKR1D1 controls bile acid homeostasis in vivo and that altering its activity can affect insulin tolerance and lipid homeostasis in a sex-dependent manner.