Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Trinidad Raices x
Clear All Modify Search
Restricted access

Maria F Heber, Silvana R Ferreira, Giselle Adriana Abruzzese, Trinidad Raices, Omar Pedro Pignataro, Margarita Vega and Alicia B Motta

Insulin resistance is the decreased ability of insulin to mediate metabolic actions. In the ovary, insulin controls ovulation and oocyte quality. Alterations in ovarian insulin signaling pathway could compromise ovarian physiology. Here, we aimed to investigate the effects of fetal programming on ovarian insulin signaling and evaluate the effect of metformin treatment. Pregnant rats were hyperandrogenized with testosterone and female offspring born to those dams were employed; at adulthood, prenatally hyperandrogenized (PH) offspring presented two phenotypes: irregular ovulatory (PHiov) and anovulatory (PHanov). Half of each group was orally treated with metformin. Metformin treatment improved the estrous cyclicity in both PH groups. Both PH groups showed low mRNA levels of IR, IRS1 and Glut4. IRS2 was decreased only in PHanov. Metformin upregulated the mRNA levels of some of the mediators studied. Protein expression of IR, IRS1/2 and GLUT4 was decreased in both PH groups. In PHiov, metformin restored the expression of all the mediators, whereas, in PHanov, metformin restored only that of IR and IRS1/2. IRS1 phosphorylation was measured in tyrosine residues, which activates the pathway, and in serine residues, which impairs insulin action. PHiov presented high IRS1 phosphorylation on tyrosine and serine residues, whereas PHanov showed high serine phosphorylation and low tyrosine phosphorylation. Metformin treatment lowered serine phosphorylation only in PHanov rats. Our results suggest that PHanov rats have a defective insulin action, partially restored with metformin. PHiov rats had less severe alterations, and metformin treatment was more effective in this phenotype.