Search Results
You are looking at 1 - 5 of 5 items for
- Author: Ulrika Islander x
- Refine by Access: All content x
Search for other papers by Louise Grahnemo in
Google Scholar
PubMed
Departments of Rheumatology and Inflammation Research, Internal Medicine and Clinical Nutrition, Laboratory of Tumor Immunology and Biology, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, Gothenburg 405 30, Sweden
Search for other papers by Caroline Jochems in
Google Scholar
PubMed
Search for other papers by Annica Andersson in
Google Scholar
PubMed
Departments of Rheumatology and Inflammation Research, Internal Medicine and Clinical Nutrition, Laboratory of Tumor Immunology and Biology, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, Gothenburg 405 30, Sweden
Search for other papers by Cecilia Engdahl in
Google Scholar
PubMed
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
Search for other papers by Ulrika Islander in
Google Scholar
PubMed
Search for other papers by Hans Carlsten in
Google Scholar
PubMed
Treatment with anti-inflammatory glucocorticoids is associated with osteoporosis. Many of the treated patients are postmenopausal women, who even without treatment have an increased risk of osteoporosis. Lymphocytes have been shown to play a role in postmenopausal and arthritis-induced osteoporosis, and they are targeted by glucocorticoids. The aim of this study was to investigate the mechanisms behind effects of glucocorticoids on bone during health and menopause, focusing on lymphocytes. Female C57BL/6 or SCID mice were therefore sham-operated or ovariectomized and 2 weeks later treatment with dexamethasone (dex), the nonsteroidal anti-inflammatory drug carprofen, or vehicle was started and continued for 2.5 weeks. At the termination of experiments, femurs were phenotyped using peripheral quantitative computed tomography and high-resolution micro-computed tomography, and markers of bone turnover were analyzed in serum. T and B lymphocyte populations in bone marrow and spleen were analyzed by flow cytometry. Dex-treated C57BL/6 mice had increased trabecular bone mineral density, but lower cortical content and thickness compared with vehicle-treated mice. The dex-treated mice also had lower levels of bone turnover markers and markedly decreased numbers of spleen T and B lymphocytes. In contrast, these effects could not be repeated when mice were treated with the nonsteroidal anti-inflammatory drug carprofen. In addition, dex did not increase trabecular bone in ovariectomized SCID mice lacking functional T and B lymphocytes. In contrast to most literature, the results from this study indicate that treatment with dex increased trabecular bone density, which may indicate that this effect is associated with corticosteroid-induced alterations of the lymphocyte populations.
Search for other papers by Niklas Andersson in
Google Scholar
PubMed
Search for other papers by Ulrika Islander in
Google Scholar
PubMed
Search for other papers by Emil Egecioglu in
Google Scholar
PubMed
Search for other papers by Elin Löf in
Google Scholar
PubMed
Search for other papers by Charlotte Swanson in
Google Scholar
PubMed
Search for other papers by Sofia Movérare-Skrtic in
Google Scholar
PubMed
Search for other papers by Klara Sjögren in
Google Scholar
PubMed
Search for other papers by Marie K Lindberg in
Google Scholar
PubMed
Search for other papers by Hans Carlsten in
Google Scholar
PubMed
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
It is generally believed that estrogens exert their bone sparing effects directly on the cells within the bone compartment. The aim of the present study was to investigate if central mechanisms might be involved in the bone sparing effect of estrogens. The dose–response of central (i.c.v) 17β-estradiol (E2) administration was compared with that of peripheral (s.c.) administration in ovariectomized (ovx) mice. The dose–response curves for central and peripheral E2 administration did not differ for any of the studied estrogen-responsive tissues, indicating that these effects were mainly peripheral. In addition, ovx mice were treated with E2 and/or the peripheral estrogen receptor antagonist ICI 182,780. ICI 182,780 attenuated most of the estrogenic response regarding uterus weight, retroperitoneal fat weight, cortical BMC and trabecular bone mineral content (P<0.05). These findings support the notion that the primary target tissue that mediates the effect of E2 on bone is peripheral and not central.
Search for other papers by Annica Andersson in
Google Scholar
PubMed
Search for other papers by Anna E Törnqvist in
Google Scholar
PubMed
Search for other papers by Sofia Moverare-Skrtic in
Google Scholar
PubMed
Search for other papers by Angelina I Bernardi in
Google Scholar
PubMed
Search for other papers by Helen H Farman in
Google Scholar
PubMed
Search for other papers by Pierre Chambon in
Google Scholar
PubMed
Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
Search for other papers by Cecilia Engdahl in
Google Scholar
PubMed
Search for other papers by Marie K Lagerquist in
Google Scholar
PubMed
Search for other papers by Sara H Windahl in
Google Scholar
PubMed
Search for other papers by Hans Carlsten in
Google Scholar
PubMed
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
Search for other papers by Ulrika Islander in
Google Scholar
PubMed
Apart from the role of sex steroids in reproduction, sex steroids are also important regulators of the immune system. 17β-estradiol (E2) represses T and B cell development, but augments B cell function, possibly explaining the different nature of immune responses in men and women. Both E2 and selective estrogen receptors modulators (SERM) act via estrogen receptors (ER). Activating functions (AF)-1 and 2 of the ER bind to coregulators and thus influence target gene transcription and subsequent cellular response to ER activation. The importance of ERαAF-1 and AF-2 in the immunomodulatory effects of E2/SERM has previously not been reported. Thus, detailed studies of T and B lymphopoiesis were performed in ovariectomized E2-, lasofoxifene- or raloxifene-treated mice lacking either AF-1 or AF-2 domains of ERα, and their wild-type littermate controls. Immune cell phenotypes were analyzed with flow cytometry. All E2 and SERM-mediated inhibitory effects on thymus cellularity and thymic T cell development were clearly dependent on both ERαAFs. Interestingly, divergent roles of ERαAF-1 and ERαAF-2 in E2 and SERM-mediated modulation of bone marrow B lymphopoiesis were found. In contrast to E2, effects of lasofoxifene on early B cells did not require functional ERαAF-2, while ERαAF-1 was indispensable. Raloxifene reduced early B cells partly independent of both ERαAF-1 and ERαAF-2. Results from this study increase the understanding of the impact of ER modulation on the immune system, which can be useful in the clarification of the molecular actions of SERMs and in the development of new SERM.
Search for other papers by Karin L Gustafsson in
Google Scholar
PubMed
Search for other papers by Sofia Movérare-Skrtic in
Google Scholar
PubMed
Search for other papers by Helen H Farman in
Google Scholar
PubMed
Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
Search for other papers by Cecilia Engdahl in
Google Scholar
PubMed
Search for other papers by Petra Henning in
Google Scholar
PubMed
Search for other papers by Karin H Nilsson in
Google Scholar
PubMed
Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
Search for other papers by Julia M Scheffler in
Google Scholar
PubMed
Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
Search for other papers by Edina Sehic in
Google Scholar
PubMed
Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
Search for other papers by Ulrika Islander in
Google Scholar
PubMed
Department of Veterans Affairs Medical Center, Long Beach, Long Beach, California, USA
Search for other papers by Ellis Levin in
Google Scholar
PubMed
Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
Search for other papers by Marie K Lagerquist in
Google Scholar
PubMed
Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but can also utilize membrane-initiated signaling pathways. To determine if membrane-initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451A mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradiol (E2), and various tissues were evaluated. Las and Bza treatment increased uterine weight to a similar extent in C451A and control mice, demonstrating mERα-independent uterine SERM effects, while the E2 effect on the uterus was predominantly mERα-dependent. Las and Bza treatment increased both trabecular and cortical bone mass in controls to a similar degree as E2, while both SERM and E2 treatment effects were absent in C451A mice. This demonstrates that SERM effects, similar to E2 effects, in the skeleton are mERα-dependent. Both Las and E2 treatment decreased thymus weight in controls, while neither treatment affected the thymus in C451A mice, demonstrating mERα-dependent SERM and E2 effects in this tissue. Interestingly, both SERM and E2 treatments decreased the total body fat percent in C451A mice, demonstrating the ability of these treatments to affect fat tissue in the absence of functional mERα signaling. In conclusion, mERα signaling can modulate SERM responses in a tissue-specific manner. This novel knowledge increases the understanding of the mechanisms behind SERM effects and may thereby facilitate the development of new improved SERMs.
Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
Search for other papers by Carmen Corciulo in
Google Scholar
PubMed
Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
Search for other papers by Julia M Scheffler in
Google Scholar
PubMed
Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
Search for other papers by Piotr Humeniuk in
Google Scholar
PubMed
Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
Search for other papers by Alicia Del Carpio Pons in
Google Scholar
PubMed
Search for other papers by Alexandra Stubelius in
Google Scholar
PubMed
Search for other papers by Ula Von Mentzer in
Google Scholar
PubMed
Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
Search for other papers by Christina Drevinge in
Google Scholar
PubMed
Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
Search for other papers by Aidan Barrett in
Google Scholar
PubMed
Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
Search for other papers by Sofia Wüstenhagen in
Google Scholar
PubMed
Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
Search for other papers by Matti Poutanen in
Google Scholar
PubMed
Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
Search for other papers by Marie K Lagerquist in
Google Scholar
PubMed
Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
Search for other papers by Ulrika Islander in
Google Scholar
PubMed
Among patients with knee osteoarthritis (OA), postmenopausal women are over-represented. The purpose of this study was to determine whether deficiency of female sex steroids affects OA progression and to evaluate the protective effect of treatment with a physiological dose of 17β-estradiol (E2) on OA progression using a murine model. Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX or sham-operated mice underwent surgery for destabilization of the medial meniscus (DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX of OA mice did not influence the cartilage phenotype or synovial thickness, while both cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX mice displayed decreased motor activity, reduced threshold of pain sensitivity, and increased number of T cells in the inguinal lymph nodes compared to sham-operated mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage damage and thickening of the synovium in OVX OA mice. The motor activity was improved after E2 replacement at the 2 weeks time point, which was also associated with lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a physiological dose of E2 exerts a protective role by reducing OA symptoms.