Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Vikte Lionikaite x
Clear All Modify Search
Open access

Vikte Lionikaite, Karin L Gustafsson, Anna Westerlund, Sara H Windahl, Antti Koskela, Juha Tuukkanen, Helena Johansson, Claes Ohlsson, Herschel H Conaway, Petra Henning and Ulf H Lerner

Excess vitamin A has been associated with decreased cortical bone thickness and increased fracture risk. While most studies in rodents have employed high dosages of vitamin A for short periods of time, we investigated the bone phenotype in mice after longer exposure to more clinically relevant doses. For 1, 4 and 10 weeks, mice were fed a control diet (4.5µg retinyl acetate/g chow), a diet modelled from the human upper tolerable limit (UTL; 20µg retinyl acetate/g chow) and a diet three times UTL (supplemented; 60µg retinyl acetate/g chow). Time- dependent decreases in periosteal circumference were noted with the supplemented dose. These reductions in cortical bone resulted in a significant time-dependent decrease of predicted strength and a non-significant trend towards reduced bone strength as analyzed by three-point bending. Trabecular bone in tibiae and vertebrae remained unaffected when vitamin A was increased in the diet. Dynamic histomorphometry demonstrated that bone formation was substantially decreased after 1 week of treatment at the periosteal site with the supplemental dose. Increasing amount of vitamin A decreased endocortical circumference, resulting in decreased marrow area, a response associated with enhanced endocortical bone formation. In the presence of bisphosphonate, vitamin A had no effect on cortical bone, suggesting that osteoclasts are important, even if effects on bone resorption were not detected by osteoclast counting, genes in cortical bone, or analysis of serum TRAP5b and CTX. In conclusion, our results indicate that even clinically relevant doses of vitamin A have a negative impact on the amount of cortical bone.

Full access

Helen H Farman, Karin L Gustafsson, Petra Henning, Louise Grahnemo, Vikte Lionikaite, Sofia Movérare-Skrtic, Jianyao Wu, Henrik Ryberg, Antti Koskela, Juha Tuukkanen, Ellis Levin, Claes Ohlsson and Marie K Lagerquist

The importance of estrogen receptor α (ERα) for the regulation of bone mass in males is well established. ERα mediates estrogenic effects both via nuclear and membrane-initiated ERα (mERα) signaling. The role of mERα signaling for the effects of estrogen on bone in male mice is unknown. To investigate the role of mERα signaling, we have used mice (nuclear-only-ER; NOER) with a point mutation (C451A), which results in inhibited trafficking of ERα to the plasma membrane. Gonadal intact male NOER mice had a significantly decreased total body areal bone mineral density (aBMD) compared to wild type (WT) littermates at three, six, and nine months of age as measured by dual-energy X-ray absorptiometry (DEXA). High-resolution micro-computed tomography (µCT) analysis of tibia in three-month-old males demonstrated a decrease in cortical and trabecular thickness in NOER mice compared to WT littermates. As expected, estradiol (E2) treatment of orchidectomized (ORX) WT mice increased total body aBMD, trabecular BV/TV, and cortical thickness in tibia compared to placebo treatment. E2 treatment increased these skeletal parameters also in ORX NOER mice. However, the estrogenic responses were significantly decreased in ORX NOER mice compared with ORX WT mice. In conclusion, mERα is essential for normal estrogen signaling in both trabecular and cortical bone in male mice. Increased knowledge of estrogen signaling mechanisms in the regulation of the male skeleton may aid in the development of new treatment options for male osteoporosis.