Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Virginia L Massheimer x
Clear All Modify Search
Free access

Pablo H Cutini, Adrián E Campelo and Virginia L Massheimer

Medroxyprogesterone acetate (MPA) is a synthetic progestin commonly used in hormone replacement therapy (HRT). The aim of this research was to study and compare the effect of progesterone (Pg) and MPA on the regulation of cellular events associated with vascular homeostasis and disease. Platelet adhesion to endothelial cells (ECs), nitric oxide (NO) production, and cell migration were studied using murine ECs in vitro exposed to the progestins. After 7 min of treatment, MPA significantly inhibited NO synthesis with respect to control values; meanwhile, Pg markedly increased vasoactive production. In senile ECs, the stimulatory action of Pg decreases; meanwhile, MPA maintained its ability to inhibit NO synthesis. The presence of RU486 antagonized the action of each steroid. When ECs were preincubated with PD98059 (MAPK inhibitor) or chelerythrine (protein kinase C (PKC) inhibitor) before Pg or MPA treatment, the former totally suppressed the steroid action, but the PKC antagonist did not affect NO production. In the presence of a PI3K inhibitor (LY294002), a partial reduction in Pg effect and a reversal of MPA action were detected. Using indomethacin, the contribution of the cyclooxygenase (COX) pathway was also detected. On platelet adhesion assays, Pg inhibited and MPA stimulated platelet adhesion to ECs. Under inflammatory conditions, Pg prevented platelet adhesion induced by lipopolysaccharide (LPS); meanwhile, MPA potentiated the stimulatory action of LPS. Finally, although both steroids enhanced migration of ECs, MPA exhibited a greater effect. In conclusion, the data presented in this research provide evidence of a differential regulation of vascular function by Pg and MPA.

Free access

Adrián E Campelo, Pablo H Cutini and Virginia L Massheimer

The aim of the present study was to investigate the effect of testosterone on the modulation of cellular events associated with vascular homeostasis. In rat aortic strips, 5–20 min treatment with physiological concentrations of testosterone significantly increased nitric oxide (NO) production. The rapid action of the steroid was suppressed by the presence of an androgen receptor antagonist (flutamide). We obtained evidence that the enhancement in NO synthesis was dependent on the influx of calcium from extracellular medium, because in the presence of a calcium channel blocker (verapamil) the effect of testosterone was reduced. Using endothelial cell (EC) cultures, we demonstrated that androgen directly acts at the endothelial level. Chelerythrine or PD98059 compound completely suppressed the increase in NO production, suggesting that the mechanism of action of the steroid involves protein kinase C and mitogen-activated protein kinase pathways. It is known that endothelial NO released into the vascular lumen serves as an inhibitor of platelet activation and aggregation. We showed that testosterone inhibited platelet aggregation and this effect was dependent on endothelial NO synthesis. Indeed, the enhancement of NO production elicited by androgen was associated with EC growth. The steroid significantly increased DNA synthesis after 24 h of treatment, and this mitogenic action was blunted in the presence of NO synthase inhibitor N-nitro-l-arginine methyl ester. In summary, testosterone modulates vascular EC growth and platelet aggregation through its direct action on endothelial NO production.