Search Results

You are looking at 1 - 6 of 6 items for

  • Author: W W Dickhoff x
  • Refine by access: All content x
Clear All Modify Search
M. Rand-Weaver
Search for other papers by M. Rand-Weaver in
Google Scholar
PubMed
Close
,
P. Swanson
Search for other papers by P. Swanson in
Google Scholar
PubMed
Close
,
H. Kawauchi
Search for other papers by H. Kawauchi in
Google Scholar
PubMed
Close
, and
W. W. Dickhoff
Search for other papers by W. W. Dickhoff in
Google Scholar
PubMed
Close

ABSTRACT

Somatolactin (SL), a newly discovered fish pituitary protein belonging to the GH/prolactin family, was isolated from coho salmon (Oncorhynchus kisutch). Antibodies were raised to purified coho SL, and a homologous radioimmunoassay was developed and validated. The assay was specific for SL as indicated by the absence of cross-reactivity with coho salmon GH, gonadotrophins I and II and less than 0·2% cross-reaction to prolactin. Serial dilutions of plasma and pituitary extracts from Oncorhynchus species including coho salmon, chinook salmon and rainbow trout were parallel to the coho salmon SL standard curve. Displacement curves for dilutions of Atlantic salmon (Salmo salar) plasma, but not pituitary extract were parallel to the standards. Plasma levels of SL were measured in coho salmon throughout the final year of reproductive maturation. During the period of gonadal growth, plasma SL levels increased and were highly correlated to oestradiol levels in females and 11-ketotestosterone levels in males. Peak levels of SL were observed at the time of final maturation and spawning in both sexes. It is hypothesized that SL may regulate some physiological aspect of reproduction.

Journal of Endocrinology (1992) 133, 393–403

Restricted access
M Shimizu
Search for other papers by M Shimizu in
Google Scholar
PubMed
Close
,
J T Dickey
Search for other papers by J T Dickey in
Google Scholar
PubMed
Close
,
H Fukada
Search for other papers by H Fukada in
Google Scholar
PubMed
Close
, and
W W Dickhoff
Search for other papers by W W Dickhoff in
Google Scholar
PubMed
Close

Western ligand blotting of salmon serum typically reveals three insulin-like growth factor (IGF) binding proteins (IGFBPs) at 22, 28 and 41 kDa. Physiologic regulation of the 22 kDa IGFBP is similar to that of mammalian IGFBP-1; it is increased in catabolic states such as fasting and stress. On the other hand, its molecular mass on Western ligand blotting is closest to mammalian IGFBP-4. The conflict between physiology and molecular mass makes it difficult to determine the identity of the 22 kDa IGFBP. This study therefore aimed to identify the 22 kDa IGFBP from protein and cDNA sequences. The 22 kDa IGFBP was purified from chinook salmon serum by a combination of IGF-affinity chromatography and reverse-phase chromatography. The N-terminal aminoacid sequence of the purified protein was used to design degenerate primers. Degenerate PCR with liver template amplified a partial IGFBP cDNA, and full-length cDNA was obtained by 5′- and 3′-rapid amplification of cDNA ends (RACE). The 1915-bp cDNA clone encodes a 23.8 kDa IGFBP, and its N-terminal amino-acid sequence matched that of purified 22 kDa IGFBP. Sequence comparison with six human IGFBPs revealed that it is most similar to IGFBP-1 (40% identity and 55% similarity). These findings indicate that salmon 22 kDa IGFBP is IGFBP-1. Salmon IGFBP-1 mRNA is predominantly expressed in the liver, and its expression levels appear to reflect circulating levels. The 3′-untranslated region of salmon IGFBP-1 mRNA contains four repeats of the nucleotide sequence ATTTA, which is involved in selective mRNA degradation. In contrast, amino-acid sequence analysis revealed that salmon IGFBP-1 does not have an Arg-Gly-Asp (RGD) integrin recognition sequence nor a Pro, Glu, Ser and Thr (PEST)-rich domain (a segment involved in rapid turnover of protein), both of which are characteristic of mammalian IGFBP-1. These findings suggest that association with the cell surface and turnover rate may differ between salmon and mammalian IGFBP-1.

Free access
A L Pierce
Search for other papers by A L Pierce in
Google Scholar
PubMed
Close
,
H Fukada
Search for other papers by H Fukada in
Google Scholar
PubMed
Close
, and
W W Dickhoff
Search for other papers by W W Dickhoff in
Google Scholar
PubMed
Close

Liver production of insulin-like growth factor-I (IGF-I) is a major point of control in the growth hormone (GH)/IGF axis, the endocrine system regulating body growth in fishes and other vertebrates. Pituitary GH stimulates hepatocyte production of IGF-I; however, in catabolic states, hepatocyte GH resistance results in decreases in liver IGF-I production. To investigate endocrine mechanisms leading to the development of hepatocyte GH resistance, we examined the regulation of IGF-I mRNA level by GH and metabolic hormones in primary culture of salmon hepatocytes. Cells were cultured in RPMI medium, and exposed to insulin (Ins, 10−6 M), glucagon (Glu, 10−6 M), triiodothyronine (T3, 10−7 M), dexamethasone (Dex, 10−6 M) and glucagon-like peptide (GLP, 10−6 M), in the presence and absence of GH (5×10−9 M). GH always increased IGF-I mRNA. None of the other hormones tested alone affected IGF-I mRNA. However, Dex, Ins and Glu reduced the response to GH. The response to GH was inhibited by Dex at concentrations of 10−12 M and above, by Ins at 10−9 M and above, and by Glu only at 10−6 M. Inhibition of GH response by glucocorticoids is found in other vertebrates. Salmon hepatocytes were very sensitive to Dex, suggesting that glucocorticoids may play an important role in salmon growth regulation even in unstressed conditions. Inhibition of GH response by Ins is the opposite of what is found in mammals and chickens, suggesting that the role of Ins in growth regulation may differ between fishes and tetrapods. To examine mechanisms for modulation of GH sensitivity, we measured hepatocyte GH receptor (GHR) mRNA levels. Ins inhibited and Dex stimulated GHR mRNA, suggesting that different mechanisms mediate the inhibition of GH response by these hormones. This study shows that glucocorticoids, Ins, and Glu induce GH resistance in cultured salmon hepatocytes.

Free access
A L Pierce Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA

Search for other papers by A L Pierce in
Google Scholar
PubMed
Close
,
J T Dickey Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA

Search for other papers by J T Dickey in
Google Scholar
PubMed
Close
,
L Felli Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA

Search for other papers by L Felli in
Google Scholar
PubMed
Close
,
P Swanson Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA

Search for other papers by P Swanson in
Google Scholar
PubMed
Close
, and
W W Dickhoff Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA

Search for other papers by W W Dickhoff in
Google Scholar
PubMed
Close

Igf1 and Igf2 stimulate growth and development of vertebrates. Circulating Igfs are produced by the liver. In mammals, Igf1 mediates the postnatal growth-promoting effects of growth hormone (Gh), whereas Igf2 stimulates fetal and placental growth. Hepatic Igf2 production is not regulated by Gh in mammals. Little is known about the regulation of hepatic Igf2 production in nonmammalian vertebrates. We examined the regulation of igf2 mRNA level by metabolic hormones in primary cultured coho salmon hepatocytes. Gh, insulin, the glucocorticoid agonist dexamethasone (Dex), and glucagon increased igf2 mRNA levels, whereas triiodothyronine (T3) decreased igf2 mRNA levels. Gh stimulated igf2 mRNA at physiological concentrations (0.25×10−9 M and above). Insulin strongly enhanced Gh stimulation of igf2 at low physiological concentrations (10−11 M and above), and increased basal igf2 (10−8 M and above). Dex stimulated basal igf2 at concentrations comparable to those of stressed circulating cortisol (10−8 M and above). Glucagon stimulated basal and Gh-stimulated igf2 at supraphysiological concentrations (10−7 M and above), whereas T3 suppressed basal and Gh-stimulated igf2 at the single concentration tested (10−7 M). These results show that igf2 mRNA level is highly regulated in salmon hepatocytes, suggesting that liver-derived Igf2 plays a significant role in salmon growth physiology. The synergistic regulation of igf2 by insulin and Gh in salmon hepatocytes is similar to the regulation of hepatic Igf1 production in mammals.

Free access
Munetaka Shimizu Northwest Fisheries Science Center, NOAA Fisheries, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA
School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA
Graduate School of Fisheries Sciences, Hokkaido University, 3-1–1 Minato, Hakodate, Hokkaido 041-8611, Japan

Search for other papers by Munetaka Shimizu in
Google Scholar
PubMed
Close
,
Brian R Beckman Northwest Fisheries Science Center, NOAA Fisheries, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA
School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA
Graduate School of Fisheries Sciences, Hokkaido University, 3-1–1 Minato, Hakodate, Hokkaido 041-8611, Japan

Search for other papers by Brian R Beckman in
Google Scholar
PubMed
Close
,
Akihiko Hara Northwest Fisheries Science Center, NOAA Fisheries, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA
School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA
Graduate School of Fisheries Sciences, Hokkaido University, 3-1–1 Minato, Hakodate, Hokkaido 041-8611, Japan

Search for other papers by Akihiko Hara in
Google Scholar
PubMed
Close
, and
Walton W Dickhoff Northwest Fisheries Science Center, NOAA Fisheries, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA
School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA
Graduate School of Fisheries Sciences, Hokkaido University, 3-1–1 Minato, Hakodate, Hokkaido 041-8611, Japan

Search for other papers by Walton W Dickhoff in
Google Scholar
PubMed
Close

Fish plasma/serum contains multiple IGF binding proteins (IGFBPs), although their identity and physiological regulation are poorly understood. In salmon plasma, at least three IGFBPs with molecular masses of 22, 28 and 41 kDa are detected by Western ligand blotting. The 22 kDa IGFBP has recently been identified as a homolog of mammalian IGFBP-1. In the present study, an RIA for salmon IGFBP-1 was established and regulation of IGFBP-1 by food intake and temperature, and changes in IGFBP-1 during smoltification, were examined. Purified IGFBP-1 from serum was used for as a standard, for tracer preparation and for antiserum production. Cross-linking 125I-labelled IGFBP-1 with salmon IGF-I eliminated interference by IGFs. The RIA had little cross-reactivity with salmon 28 and 41 kDa IGFBPs (< 0·5%) and measured IGFBP-1 levels as low as 0·1 ng/ml. Fasted fish had significantly higher IGFBP-1 levels than fed fish (21·6 ± 4·6 vs 3·0 ± 2·2 ng/ml). Plasma IGFBP-1 was measured in individually tagged 1-year-old coho salmon reared for 10 weeks under four different feeding regimes as follows: high constant (2% body weight/day), medium constant (1% body weight/day), high variable (2% to 0·5% body weight/day) and medium variable (1% to 0·5% body weight/day). Fish fed with the high ration had lower IGFBP-1 levels than those fed with the medium ration. Circulating IGFBP-1 increased following a drop in feeding ration to 0·5% and returned to the basal levels when feeding ration was increased. Another group of coho salmon were reared for 9 weeks under different water temperatures (11 or 7°C) and feeding rations (1·75, 1 or 0·5% body weight/day). Circulating IGFBP-1 levels were separated by temperature during the first 4 weeks; a combined effect of temperature and feeding ration was seen in week 7; only feeding ration influenced IGFBP-1 level thereafter. These results indicate that IGFBP-1 is responsive to moderate nutritional and temperature changes. There was a clear trend that circulating IGFBP-1 levels were negatively correlated with body weight, condition factor (body weight/body length3 × 100), growth rates and circulating 41 kDa IGFBP levels but not IGF-I levels. During parr–smolt transformation of coho salmon, IGFBP-1 levels showed a transient peak in late April, which was opposite to the changes in condition factor. Together, these findings suggest that salmon IGFBP-1 is inhibitory to IGF action. In addition, IGFBP-1 responds to moderate changes in dietary ration and temperature, and shows a significant negative relationship to condition factor.

Free access
A L Pierce Integrative Fish Biology Program, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA

Search for other papers by A L Pierce in
Google Scholar
PubMed
Close
,
M Shimizu Integrative Fish Biology Program, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA

Search for other papers by M Shimizu in
Google Scholar
PubMed
Close
,
L Felli Integrative Fish Biology Program, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA

Search for other papers by L Felli in
Google Scholar
PubMed
Close
,
P Swanson Integrative Fish Biology Program, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA

Search for other papers by P Swanson in
Google Scholar
PubMed
Close
, and
W W Dickhoff Integrative Fish Biology Program, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA

Search for other papers by W W Dickhoff in
Google Scholar
PubMed
Close

IGF-binding proteins (IGFBPs) modulate the effects of the IGFs, major stimulators of vertebrate growth and development. In mammals, IGFBP-1 inhibits the actions of IGF-I. Rapid increases in circulating IGFBP-1 occur during catabolic states. Insulin and glucocorticoids are the primary regulators of circulating IGFBP-1 in mammals. Insulin inhibits and glucocorticoids stimulate hepatocyte IGFBP-1 gene expression and production. A 22 kDa IGFBP in salmon blood also increases during catabolic states and has recently been identified as an IGFBP-1 homolog. We examined the hormonal regulation of salmon IGFBP-1 mRNA levels and protein secretion in primary cultured salmon hepatocytes. The glucocorticoid agonist dexamethasone progressively increased hepatocyte IGFBP-1 mRNA levels (eightfold) and medium IGFBP-1 immunoreactivity over concentrations comparable with stressed circulating cortisol levels (10−9–10−6 M). GH progressively reduced IGFBP-1 mRNA levels (0.3-fold) and medium IGFBP-1 immunoreactivity over physiological concentrations (5 × 10−11–5 × 10−9 M). Unexpectedly, insulin slightly increased hepatocyte IGFBP-1 mRNA (1.4-fold) and did not change medium IGFBP-1 immunoreactivity over physiological concentrations and above (10−9–10−6 M). Triiodothyronine had no effect on hepatocyte IGFBP-1 mRNA, whereas glucagon increased IGFBP-1 mRNA (2.2-fold) at supraphysiological concentrations (10−6 M). This study suggests that the major inhibitory role of insulin in the regulation of liver IGFBP-1 production in mammals is not found in salmon. However, regulation of salmon liver IGFBP-1 production by other metabolic hormones is similar to what is found in mammals.

Free access