Search Results

You are looking at 1 - 10 of 12 items for

  • Author: Wei Liu x
  • All content x
Clear All Modify Search
Restricted access

LIDIA WEI LIU KAO and JUDITH WEISZ

An inhibitor of 5α-reductase, the 17β-carboxylic acid derivative of testosterone (testosterone-17βCA), has been used to evaluate the importance of the 5α-reduction of testosterone in its action on the suppression of LH secretion in male rats. The potential of testosterone-17βCA to inhibit the formation of 5α-dihydrotestosterone (DHT) was first demonstrated in vitro. When homogenates of hypothalami or anterior pituitary glands were incubated with [3H]testosterone in the presence of a 50-fold excess of testosterone-17βCA, the formation of labelled DHT was inhibited by more than 80%. Adult male rats that had been castrated for 1–2 months were fitted with chronic intravenous catheters and implanted with silicone elastomer sheets: one group received one sheet, 0·5–2·0 cm2 in size containing 1·6% testosterone, a second group received one 50 cm2 sheet containing 1·6% testosterone-17βCA and a third group received two sheets, one sheet 50 cm2 in size containing 1·6% testosterone-17βCA and the second ranging in size from 0·5 to 2·0 cm2 and containing 1·6% testosterone. Blood was withdrawn daily from each rat over a 4–5 day period after implantation of the steroids and the level of LH in the plasma was measured by radioimmunoassay. The seminal vesicles and the ventral prostate gland were removed at autopsy on day 4 or 5; the weights of these organs were shown to have increased progressively as the size of the implant of testosterone increased. In contrast, the level of LH in the plasma was suppressed to a comparable extent by implants of testosterone between 0·6 and 2 cm2, whereas a 0·5 cm2 implant of testosterone had no effect. Implants of testosterone-17βCA alone did not influence the weight of the accessory organs or the level of LH. When testosterone-17βCA and testosterone were implanted together, the growth-promoting effect of the latter on the accessory sex organs was significantly reduced. The effectiveness of testosterone in suppressing the level of LH in the plasma of these animals was not influenced by the presence of testosterone-17βCA and in certain instances the level was raised.

Restricted access

Chang Shan, Jiang Yue, and Wei Liu

Bone is emerging as a versatile endocrine organ and its interactions with apparently unrelated organs are being more widely recognized. Osteocalcin (OCN), a polypeptide hormone secreted by osteoblasts, has been found to exert multiple endocrine functions through its metabolically active form, uncarboxylated OCN (uOCN). Mounting evidence has shown that following its binding to G-protein coupled receptor 6a (Gprc6a) in the peripheral tissues, uOCN acts on pancreatic β cells to increase insulin secretion, and on muscle and white adipose tissue to promote glucose and lipid metabolism. More strikingly, researchers have found a surprising role of uOCN in testicular function to facilitating testosterone biosynthesis and regulating male fertility via a pancreas-bone-gonadal axis. However, the detailed functional mechanisms of uOCN on the hypothalamic-pituitary-gonadal axis or the pancreas-bone-gonadal axis are not fully understood. Besides highlighting the regulatory mechanisms of uOCN in the central nervous system, hypothalamus and pituitary, we also discuss its role in male as well as female fertility and its potential clinical implications in some reproductive endocrine diseases and pubertal developmental disorders.

Free access

Hong-Wei Wang, Michelle Muguira, Wei-Dong Liu, Tao Zhang, Chiachen Chen, Rebecca Aucoin, Mary B Breslin, and Michael S Lan

In this study, an insulinoma-associated antigen-1 (INSM1)-binding site in the proximal promoter sequence of the insulin gene was identified. The co-transfection of INSM1 with rat insulin I/II promoter-driven reporter genes exhibited a 40–50% inhibitory effect on the reporter activity. Mutational experiments were performed by introducing a substitution, GG to AT, into the INSM1 core binding site of the rat insulin I/II promoters. The mutated insulin promoter exhibited a three- to 20-fold increase in the promoter activity over the wild-type promoter in several insulinoma cell lines. Moreover, INSM1 overexpression exhibited no inhibitory effect on the mutated insulin promoter. Chromatin immunoprecipitation assays using βTC-1, mouse fetal pancreas, and Ad-INSM1-transduced human islets demonstrated that INSM1 occupies the endogenous insulin promoter sequence containing the INSM1-binding site in vivo. The binding of the INSM1 to the insulin promoter could suppress ∼50% of insulin message in human islets. The mechanism for transcriptional repression of the insulin gene by INSM1 is mediated through the recruitment of cyclin D1 and histone deacetylase-3 to the insulin promoter. Anti-INSM1 or anti-cyclin D1 morpholino treatment of fetal mouse pancreas enhances the insulin promoter activity. These data strongly support the view that INSM1 is a new zinc-finger transcription factor that modulates insulin gene transcription during early pancreas development.

Free access

Jing Xie, Wei-Qing Wang, Ting-Xi Liu, Min Deng, and Guang Ning

Chromogranin A (CHGA), a protein participating in the biogenesis of dense core secretory granules in various neuroendocrine tissues, plays a critical role in the release of hormones/peptides and the pathogenesis of pheochromocytoma. However, little is known about the developmental origin of CHGA-expressing cells during embryogenesis. Here, we report the structural characterization and spatio-temporal expression pattern of zebrafish (Danio rerio) ortholog of mammalian CHGA. The earliest expression of chga transcripts was observed at 16 h post fertilization in the developing cranial ganglia as six distinct cellular masses arranged bilaterally as strings of beads in the dorsal root ganglia (DRG) precursors along the dorsal trunk. With development advancing, the chga transcripts were expressed abundantly in diencephalon, mesencephalon, and rhombencephalon as well as in the DRG. Interestingly, double in situ hybridization assay of chga with genes expressed in pronephros (Wilms' tumor suppressor 1, wt1), adrenal cortex (side-chain cleavage enzyme, scc), and sympathoadrenal neuron/chromaffin cell (dopamine-β-hydroxylase, dbh), respectively, showed that the chga-expressing cells are spatially separated from wt1-, scc-, and dbh-positive cell populations during early embryonic development. The pronephros region does not express chga even up to 7 days post fertilization, while chga positive-staining cells bind in the brain and DRG, indicating that chga may play an important role in nervous system development during the early embryonic stages.

Free access

Jacob C Garza, Chung Sub Kim, Jing Liu, Wei Zhang, and Xin-Yun Lu

Pharmacological and genetic studies have suggested that melanocortin-4 receptor (MC4R) signaling in the paraventricular nucleus of hypothalamus (PVN) regulates appetite and energy balance. However, the specific role of MC4R signaling in PVN neurons in these processes remains to be further elucidated in normally developed animals. In the present study, we employed RNA interference to determine whether MC4R knockdown in the PVN modulates food intake and body weight in adult rats. Adeno-associated viral (AAV) vectors encoding short hairpin RNAs targeting MC4R (AAV-shRNA-MC4R) were generated to induce MC4R knockdown in the PVN. By in situ hybridization, we detected a high-level expression of Dicer, a key enzyme required for shRNA-mediated gene silencing, along the entire rostrocaudal extent of the PVN. Bilateral injection of AAV-shRNA-MC4R vectors into the PVN of the adult rat resulted in significant and specific reduction of MC4R mRNA expression. Animals with MC4R knockdown exhibited an increase in food intake and excessive body weight gain when exposed to a high-fat diet. Our results provide evidence that AAV-mediated silencing of MC4R on PVN neurons promotes hyperphagia and obesity in response to the dietary challenge in the adult animal.

Free access

Fu-Qing Yu, Chun-Sheng Han, Wei Yang, Xuan Jin, Zhao-Yuan Hu, and Yi-Xun Liu

In the present study, we started out to test whether the follicle-stimulating hormone (FSH)-activated p38 MAPK signaling cascade was involved in the regulation of steroidogenesis in granulosa cells (GCs). GCs were prepared from the ovaries of DES-treated immature rats and cultured in serum-free medium. Treatment of GCs with FSH (50 ng/ml) induced the phosphorylation of p38 MAPK rapidly with the phosphorylation being observed within 5 min and reaching the highest level at 30 min. Such activation was protein kinase A-dependent as indicated by the results using specific inhibitors. FSH stimulated the production of progesterone and estradiol as well as the expression of the steroidogenic acute regulatory protein (StAR) in a time-dependent manner, with a maximum level being observed in the production of progesterone and StAR at 48 h. Moreover, the potent p38 MAPK inhibitor SB203580 (20 μM) augmented FSH-induced progesterone and StAR production, while reduced FSH-induced estradiol production at the same time (P<0.01). RT-PCR data showed that inclusion of SB203580 in the media enhanced FSH-stimulated StAR mRNA production, while decreased the FSH-stimulated P450arom mRNA expression (P<0.05). Immunocytochemical studies showed that FSH treatment together with the inhibition of p38 MAPK activity resulted in a higher expression of StAR in mitochondria than FSH treatment alone. FSH also significantly up-regulated the protein level of LRH-1, a member of the orphan receptor family that activates the expression of P450arom in ovaries and testes. p38 MAPK inactivation down-regulated the basal and FSH-induced LRH-1 expression significantly. The intra-cellular level of DAX-1, another orphan receptor that inhibits StAR expression, also decreased upon p38 MAPK being inactivated. For the first time, the present study suggests that FSH-activated p38 MAPK signal pathway regulates progesterone and estrogen production in GCs differentially, and that the transcription factors LRH-1 and DAX-1 might play important roles in the process.

Free access

Cuili Wang, Dongteng Liu, Weiting Chen, Wei Ge, Wanshu Hong, Yong Zhu, and Shi X Chen

Our previous study showed that the in vivo positive effects of 17α,20β-dihydroxy-4-pregnen-3-one (DHP), the major progestin in zebrafish, on early spermatogenesis was much stronger than the ex vivo ones, which may suggest an effect of DHP on the expression of gonadotropins. In our present study, we first observed that fshb and lhb mRNA levels in the pituitary of male adult zebrafish were greatly inhibited by 3 weeks exposure to 10nM estradiol (E2). However, an additional 24h 100nM DHP exposure not only reversed the E2-induced inhibition, but also significantly increased the expression of fshb and lhb mRNA. These stimulatory effects were also observed in male adult fish without E2 pretreatment, and a time course experiment showed that it took 24h for fshb and 12h for lhb to respond significantly. Because these stimulatory activities were partially antagonized by a nuclear progesterone receptor (Pgr) antagonist mifepristone, we generated a Pgr-knockout (pgr –/–) model using the TALEN technique. With and without DHP in vivo treatment, fshb and lhb mRNA levels of pgr –/– were significantly lower than those of pgr +/+. Furthermore, ex vivo treatment of pituitary fragments of pgr –/– with DHP stimulated lhb, but not fshb mRNA expression. Results from double-colored fluorescent in situ hybridization showed that pgr mRNA was expressed only in fshb-expressing cells. Taken together, our results indicated that DHP participated in the regulation of neuroendocrine control of reproduction in male zebrafish, and exerted a Pgr-mediated direct stimulatory effect on fshb mRNA at pituitary level.

Free access

Le Bu, Qian Yao, Zhimin Liu, Wei Tang, Junjie Zou, and Shen Qu

Although administration of galanin or insulin alone may enhance insulin sensitivity and glucose transporter 4 (GLUT4) trafficking, their cooperative effect on insulin sensitivity is still unclear. In the present study, we evaluated the cooperative effect of both reagents compared with solitary treatment with galanin or insulin in type 2 diabetic rats. Galanin and/or insulin were injected singly or together into type 2 diabetic rats once a day for 15 days. The results indicated that coadministration of both reagents compared with treatment with galanin or insulin alone significantly increased glucose infusion rates in euglycemic–hyperinsulinemic clamp tests, 2-deoxy-[3H]d-glucose contents, GLUT4 densities, and pAS160 and protein kinase C activity levels, but reduced blood glucose and insulin levels, as well as retinol-binding protein 4 contents, and did not affect Glut4 (Slc2a4) mRNA expression levels in myocytes. The changes in the ratios of GLUT4 immunoreaction in plasma membranes to total cell membranes of myocytes were higher in the coadministrative group compared with either the insulin or the galanin group. These results indicate that cooperation of the two hormones plays a synergic role to improve GLUT4 translocation and insulin sensitivity. This finding indicates the possibility of combining galanin with insulin with the aim of obtaining better antidiabetic efficacy than that of the canonical treatment with insulin alone.

Free access

Min Liu, Shuo Xie, Weiwei Liu, Jingjin Li, Chao Li, Wei Huang, Hexin Li, Jinghai Song, and Hong Zhang

Obesity is a worldwide health problem. Semaphorins are involved in axonal guidance; however, the role of secretory semaphorin 3G (SEMA3G) in regulating adipocyte differentiation remains unclear. Microarray analysis showed that the SEMA3G gene was upregulated in an in vitro model of adipogenesis. In this study, SEMA3G was highly expressed in the white adipose tissue and liver. Analysis of 3T3-L1 cell and primary mouse preadipocyte differentiation showed that SEMA3G mRNA and protein levels were increased during the middle stage of cell development. In vitro experiments also showed that adipocyte differentiation was promoted by SEMA3G; however, SEMA3G inhibition using a recombinant lentiviral vector expressing a specific shRNA showed the opposite results. Mice were fed a chow or high-fat diet (HFD); knockdown of SEMA3G was found to inhibit weight gain, reduce fat mass in the tissues, prevent lipogenesis in the liver tissue, reduce insulin resistance and ameliorate glucose tolerance in HFD mice. Additionally, the effect of SEMA3G on HFD-induced obesity was activated through PI3K/Akt/GSK3β signaling in the adipose tissue and the AMPK/SREBP-1c pathway in the liver. Moreover, the plasma concentrations of SEMA3G and leptin were measured in 20 obese and 20 non-obese human subjects. Both proteins were increased in obese subjects, who also exhibited a lower level of adiponectin and presented with insulin resistance. In summary, we demonstrated that SEMA3G is an adipokine essential for adipogenesis, lipogenesis, and insulin resistance and is associated with obesity. SEMA3G inhibition may, therefore, be useful for treating diet-induced obesity and its complications.

Free access

Xuanchun Wang, Wei Gong, Yu Liu, Zhihong Yang, Wenbai Zhou, Mei Wang, Zhen Yang, Jie Wen, and Renming Hu

We report the identification of a novel secreted peptide, INM02. The mRNA transcript of human INM02 gene is about 3.0 kb. Its open-reading frame contains 762 bps and encodes a protein of 254 amino acids. Northern blot analysis demonstrates that INM02 mRNA is widely expressed in rat tissues, especially with abundant quantities in pancreatic islets, testis, and bladder tissue. We have expressed recombinant INM02 protein and generated rabbit anti-INM02 polyclonal antibodies. We show here that INM02 could be detectable in human serum by ELISA. We also present evidence that INM02 mRNA expression could be regulated by glucose. Experiments on both MIN6 cells and intact isolated islets demonstrate that INM02 mRNA levels are increased more than threefold by high glucose (25 mM) when compared with low glucose (5.5 mM). ELISA analysis shows that secretion of INM02 is significantly augmented by high glucose in vitro. It is speculated that as a novel secreted protein, INM02 is associated with functions of pancreatic islets, especially of β-cells.