Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Xiaorong Wang x
Clear All Modify Search
Restricted access

Jia Sun, Haiping Zhu, Xiaorong Wang, Qiuqi Gao, Zhuoying Li and Huiya Huang

The molecular signaling mechanisms of Coenzyme Q10 (CoQ10) in diabetic nephropathy (DN) remain poorly understood. We verified that mitochondrial abnormalities, like defective mitophagy, the generation of mitochondrial reactive oxygen species (mtROS) and the reduction of mitochondrial membrane potential, occurred in the glomerulus of db/db mice, accompanied by reduced PINK and parkin expression and increased apoptosis. These changes were partially reversed following oral administration of CoQ10. In inner fenestrated murine glomerular endothelial cells (mGECs), high glucose (HG) also resulted in deficient mitophagy, mitochondrial dysfunction and apoptosis, which were reversed by CoQ10. Mitophagy suppression mediated by Mdivi-1 or siPINK abrogated the renoprotective effects exerted by CoQ10, suggesting a beneficial role for CoQ10-restored mitophagy in DN. Mechanistically, CoQ10 restored the expression, activity and nuclear translocation of Nrf2 in HG-cultured mGECs. In addition, the reduced PINK and parkin expression observed in HG-cultured mGECs were partially elevated by CoQ10. CoQ10-mediated renoprotective effects were abrogated by the Nrf2 inhibitor ML385. When ML385 abolished mitophagy and the renoprotective effects exerted by CoQ10, mGECs could be rescued by treatment with mitoTEMPO, which is a mtROS-targeted antioxidant. These results suggest that CoQ10, as an effective antioxidant in mitochondria, exerts beneficial effects in DN via mitophagy by restoring Nrf2/ARE signaling. In summary, CoQ10-mediated mitophagy activation positively regulates DN through a mechanism involving mtROS, which influences the activation of the Nrf2/ARE pathway.