Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Xilin Zhang x
Clear All Modify Search
Open access

Eun Young Lee, Shuji Kaneko, Promsuk Jutabha, Xilin Zhang, Susumu Seino, Takahito Jomori, Naohiko Anzai and Takashi Miki

Oral ingestion of carbohydrate triggers glucagon-like peptide 1 (GLP1) secretion, but the molecular mechanism remains elusive. By measuring GLP1 concentrations in murine portal vein, we found that the ATP-sensitive K+ (KATP) channel is not essential for glucose-induced GLP1 secretion from enteroendocrine L cells, while the sodium-glucose co-transporter 1 (SGLT1) is required, at least in the early phase (5 min) of secretion. By contrast, co-administration of the α-glucosidase inhibitor (α-GI) miglitol plus maltose evoked late-phase secretion in a glucose transporter 2-dependent manner. We found that GLP1 secretion induced by miglitol plus maltose was significantly higher than that by another α-GI, acarbose, plus maltose, despite the fact that acarbose inhibits maltase more potently than miglitol. As miglitol activates SGLT3, we compared the effects of miglitol on GLP1 secretion with those of acarbose, which failed to depolarize the Xenopus laevis oocytes expressing human SGLT3. Oral administration of miglitol activated duodenal enterochromaffin (EC) cells as assessed by immunostaining of phosphorylated calcium–calmodulin kinase 2 (phospho-CaMK2). In contrast, acarbose activated much fewer enteroendocrine cells, having only modest phospho-CaMK2 immunoreactivity. Single administration of miglitol triggered no GLP1 secretion, and GLP1 secretion by miglitol plus maltose was significantly attenuated by atropine pretreatment, suggesting regulation via vagal nerve. Thus, while α-GIs generally delay carbohydrate absorption and potentiate GLP1 secretion, miglitol also activates duodenal EC cells, possibly via SGLT3, and potentiates GLP1 secretion through the parasympathetic nervous system.

Full access

Eun-Young Lee, Xilin Zhang, Junki Miyamoto, Ikuo Kimura, Tomoaki Taknaka, Kenichi Furusawa, Takahito Jomori, Kosuke Fujimoto, Satoshi Uematsu and Takashi Miki

Mechanisms of carbohydrate-induced secretion of the two incretins namely glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are considered to be mostly similar. However, we found that mice exhibit opposite secretory responses in response to co-administration of maltose plus an α-glucosidase inhibitor miglitol (maltose/miglitol), stimulatory for GLP-1, as reported previously, but inhibitory for GIP. Gut microbiota was shown to be involved in maltose/miglitol-induced GIP suppression, as the suppression was attenuated in antibiotics (Abs)-treated mice and abolished in germ-free mice. In addition, maltose/miglitol administration increased plasma levels of short-chain fatty acids (SCFAs), carbohydrate-derived metabolites, in the portal vein. GIP suppression by maltose/miglitol was not observed in mice lacking a SCFA receptor Ffar3, but it was normally seen in Ffar2-deficient mice. Similar to maltose/miglitol administration, co-administration of glucose plus a sodium glucose transporter inhibitor phloridzin (glucose/phloridzin) induced GIP suppression, which was again cancelled by Abs treatment. In conclusion, oral administration of carbohydrates with α-glucosidase inhibitors suppresses GIP secretion through a microbiota/SCFA/FFAR3 pathway.