Search Results

You are looking at 1 - 10 of 10 items for

  • Author: Xin Wang x
Clear All Modify Search
Free access

Shan-Jin Wang, Xin-Feng Li, Lei-Sheng Jiang and Li-Yang Dai

Regulation of the physiological processes of endochondral bone formation during long bone growth is controlled by various factors including the hormones estrogen and leptin. The effects of estrogen are mediated not only through the direct activity of estrogen receptors (ERs) but also through cross talk with other signaling systems implicated in chondrogenesis. The receptors of both estrogen and leptin (OBR (LEPR)) are detectable in growth plate chondrocytes of all zones. In this study, the expression of mRNA and protein of OBR in chondrogenic ATDC5 cells and the effect of 17β-estradiol (E2) stimulation were assessed using quantitative PCR and western blotting. We have found that the mRNA of Obr was dynamically expressed during the differentiation of ATDC5 cells over 21 days. Application of E2 (10−7 M) at day 14 for 48 h significantly upregulated OBR mRNA and protein levels (P<0.05). The upregulation of Obr mRNA by E2 was shown to take place in a concentration-dependent manner, with a concentration of 10−7 M E2 having the greatest effect. Furthermore, we have confirmed that E2 affected the phosphorylation of ERK1/2 (MAPK1/MAPK3) in a time-dependent manner where a maximal fourfold change was observed at 10 min following application of E2. Finally, pretreatment of the cells with either U0126 (ERK1/2 inhibitor) or ICI 182 780 (ER antagonist) blocked the upregulation of OBR by E2 and prevented the E2-induced phosphorylation of ERK. These data demonstrate, for the first time, the existence of cross talk between estrogen and OBR in the regulation of bone growth whereby estrogen regulates the expression of Obr in growth plate chondrocytes via ERs and the activation of ERK1/2 signaling pathways.

Free access

Xin-gang Yao, Xin Xu, Gai-hong Wang, Min Lei, Ling-ling Quan, Yan-hua Cheng, Ping Wan, Jin-pei Zhou, Jing Chen, Li-hong Hu and Xu Shen

Impaired glucose-stimulated insulin secretion (GSIS) and increasing β-cell death are two typical dysfunctions of pancreatic β-cells in individuals that are destined to develop type 2 diabetes, and improvement of β-cell function through GSIS enhancement and/or inhibition of β-cell death is a promising strategy for anti-diabetic therapy. In this study, we discovered that the small molecule, N-(2-benzoylphenyl)-5-bromo-2-thiophenecarboxamide (BBT), was effective in both potentiating GSIS and protecting β-cells from cytokine- or streptozotocin (STZ)-induced cell death. Results of further studies revealed that cAMP/PKA and long-lasting (L-type) voltage-dependent Ca2 + channel/CaMK2 pathways were involved in the action of BBT against GSIS, and that the cAMP/PKA pathway was essential for the protective action of BBT on β-cells. An assay using the model of type 2 diabetic mice induced by high-fat diet combined with STZ (STZ/HFD) demonstrated that BBT administration efficiently restored β-cell functions as indicated by the increased plasma insulin level and decrease in the β-cell loss induced by STZ/HFD. Moreover, the results indicated that BBT treatment decreased fasting blood glucose and HbA1c and improved oral glucose tolerance further highlighting the potential of BBT in anti-hyperglycemia research.

Free access

Jiannan Zhang, Xin Li, Yawei Zhou, Lin Cui, Jing Li, Chenlei Wu, Yiping Wan, Juan Li and Yajun Wang

The interaction of melanocortin-4 (MC4R) and melanocortin-3 (MC3R) receptors with proopiomelanocortin (POMC)-derived peptides (e.g. α-MSH), agouti-related protein (AgRP) and melanocortin-2 receptor accessory protein 2 (MRAP2) is suggested to play critical roles in energy balance of vertebrates. However, evidence on their interaction in birds remains scarce. Our study aims to reveal their interaction in chickens and the results showed that (1) chicken (c-)MC3R and cMC4R expressed in Chinese hamster ovary (CHO) cells can be activated by α-MSH and ACTH1–39 equipotently, monitored by a pGL3-CRE-luciferase reporter system; (2) cMC3R and cMC4R, when co-expressed with cMRAP2 (or cMRAP, a cMRAP2 homolog), show increased sensitivity to ACTH treatment and thus likely act as ACTH-preferring receptors, and the interaction between cMC3R/cMC4R and cMRAP2 was demonstrated by co-immunoprecipitation assay; (3) both cMC3R and cMC4R display constitutive activity when expressed in CHO cells, as monitored by dual-luciferase reporter assay, and cMRAP2 (and cMRAP) can modulate their constitutive activity; (4) AgRP inhibits the constitutive activity of cMC3R/cMC4R, and it also antagonizes ACTH/α-MSH action on cMC4R/cMC3R, indicating that AgRP functions as the inverse agonist and antagonist for both receptors. These findings, together with the co-expression of cMC4R, cMC3R, cMRAP2, cAgRP and cPOMC in chicken hypothalamus detected by quantitative real-time PCR, suggest that within the hypothalamus, α-MSH/ACTH, AgRP and MRAP2 may interact at the MC4R(/MC3R) interface to control energy balance. Furthermore, our data provide novel proof for the involvement of MRAP2 (and MRAP) in fine-tuning the constitutive activity and ligand sensitivity and selectivity of both MC3R and MC4R in vertebrates.

Free access

Wei Zhang, Xin-Hong Wang, Si-Feng Chen, Guo-Ping Zhang, Ning Lu, Ren-Ming Hu and Hui-Ming Jin

In this study, the effect of high glucose (HG) on endothelial progenitor cell (EPC) proliferation and its relationship with cyclins and reactive oxygen species (ROS) were investigated. Mouse EPCs were isolated from bone marrow using a magnetic activated cell-sorting system and cultured in the presence or absence of HG (30 mmol/l). We found that in the early stage of incubation (3 days), HG promoted cell proliferation, and increased the expressions of cdk2 and cyclin E, while in the late stage of culture (7 days) it inhibited cell proliferation and decreased the expressions of cdk2, cyclin E, and proliferating cell nuclear antigen (PCNA). Moreover, on the third day after incubation, HG significantly inhibited the apoptosis of EPCs, while in the late stage it markedly activated caspase-3 and promoted apoptosis. ROS generation in cells and maleic dialdehyde level in medium were significantly increased in HG group on the seventh day, whereas the expressions of superoxide dismutase and glutathione levels decreased. Tempol, a membrane-permeable radical scavenger, significantly inhibited ROS production in EPCs and partially reversed the HG-mediated inhibition of EPCs proliferation on the seventh day. We hypothesize that in the HG environment, the biphasic response of EPC proliferation may be related to the generation of ROS, which causes modulation of cyclins and cell cycle effect.

Restricted access

Xiaoning Li, Junhua Xiao, Yating Fan, Kan Yang, Kai Li, Xin Wang, Yanhua Lu and Yuxun Zhou

Gonadotropin-releasing hormone (GnRH) is the ultimate signal by which the neuroendocrine system controls the puberty onset and fertility in mammals. The pulsatile release of GnRH is regulated by numerous extracellular and intracellular factors, including miRNAs. Here, we report a novel regulation mechanism mediated by miR-29 family. We found that the absence of miR-29s resulted in elevated expression of Gnrh1 in GT1-7 cells. Through in silico and wet analysis, we identified Tbx21, a target gene of miR-29, as the main effector. As a transcription activator, TBX21 stimulates the expression of Gnrh1 directly by binding to its promoter region, and indirectly by activating the expression of Dlx1, another transcription activator of Gnrh1. Stereotactic brain infusion of miR-29 inhibitor into the hypothalamus caused earlier puberty onset in prepubertal female mice than that of intact controls. The female mice with ectopic expression of Tbx21 in the hypothalamus were affected in both puberty onset and fertility, as they had higher level of serum LH and FSH, larger litter size but steeper decline of fertility compared with those of controls. Our results revealed that miR-29-3p and its target Tbx21 played a role in regulating the mammalian puberty onset and reproduction by modulating the Gnrh1 expression.

Free access

Can Liu, Mian Zhang, Meng-yue Hu, Hai-fang Guo, Jia Li, Yun-li Yu, Shi Jin, Xin-ting Wang, Li Liu and Xiao-dong Liu

Panax ginseng is one of the most popular herbal remedies. Ginsenosides, major bioactive constituents in P. ginseng, have shown good antidiabetic action, but the precise mechanism was not fully understood. Glucagon-like peptide-1 (GLP1) is considered to be an important incretin that can regulate glucose homeostasis in the gastrointestinal tract after meals. The aim of this study was to investigate whether ginseng total saponins (GTS) exerts its antidiabetic effects via modulating GLP1 release. Ginsenoside Rb1 (Rb1), the most abundant constituent in GTS, was selected to further explore the underlying mechanisms in cultured NCI-H716 cells. Diabetic rats were developed by a combination of high-fat diet and low-dose streptozotocin injection. The diabetic rats orally received GTS (150 or 300 mg/kg) daily for 4 weeks. It was found that GTS treatment significantly ameliorated hyperglycemia and dyslipidemia, accompanied by a significant increase in glucose-induced GLP1 secretion and upregulation of proglucagon gene expression. Data from NCI-H716 cells showed that both GTS and Rb1 promoted GLP1 secretion. It was observed that Rb1 increased the ratio of intracellular ATP to ADP concentration and intracellular Ca2 + concentration. The metabolic inhibitor azide (3 mM), the KATP channel opener diazoxide (340 μM), and the Ca2 + channel blocker nifedipine (20 μM) significantly reversed Rb1-mediated GLP1 secretion. All these results drew a conclusion that ginsenosides stimulated GLP1 secretion both in vivo and in vitro. The antidiabetic effects of ginsenosides may be a result of enhanced GLP1 secretion.

Restricted access

Meng Guo, Yuna Li, Yan Wang, Zhenkun Li, Xiaohong Li, Peikun Zhao, Changlong Li, Jianyi Lv, Xin Liu, Xiaoyan Du and Zhenwen Chen

Recent studies raise the possibility that eukaryotic translation elongation factor 1 alpha (eEF1A) may play a role in metabolism. One isoform, eEF1A2, is specifically expressed in skeletal muscle, heart and brain. It regulates translation elongation and signal transduction. Nonetheless, eEF1A2’s function in skeletal muscle glucose metabolism remains unclear. In the present study, suppression subtractive hybridisation showed a decrease in Eef1a2 transcripts in the skeletal muscle of diabetic Mongolian gerbils. This was confirmed at mRNA and protein levels in hyperglycaemic gerbils, and in db/db and high-fat diet-fed mice. Further, this downregulation was independent of Eef1a2 promoter methylation. Interestingly, adeno-associated virus-mediated eEF1A2 overexpression in skeletal muscle aggravated fasting hyperglycaemia, hyperinsulinaemia and glucose intolerance in male diabetic gerbils but not in female gerbil models. The overexpression of eEF1A2 in skeletal muscle also resulted in promoted serum glucose levels and insulin resistance in male db/db mice. Up- and downregulation of eEF1A2 by lentiviral vector transfection confirmed its inhibitory effect on insulin-stimulated glucose uptake and signalling transduction in C2C12 myotubes with palmitate (PA)-induced insulin resistance. Furthermore, eEF1A2 bound PKCβ and increased its activation in the cytoplasm, whereas suppression of PKCβ by an inhibitor attenuated eEF1A2-mediated impairment of insulin sensitivity in insulin-resistant myotubes. Endoplasmic reticulum (ER) stress was elevated by eEF1A2, whereas suppression of ER stress or JNK partially restored insulin sensitivity in PA-treated myotubes. Additionally, eEF1A2 inhibited lipogenesis and lipid utilisation in insulin-resistant skeletal muscle. Collectively, we demonstrated that eEF1A2 exacerbates insulin resistance in male murine skeletal muscle via PKCβ and ER stress.

Restricted access

Wang-Yang Xu, Yan Shen, Houbao Zhu, Junhui Gao, Chen Zhang, Lingyun Tang, Shun-Yuan Lu, Chun-Ling Shen, Hong-Xin Zhang, Ziwei Li, Peng Meng, Ying-Han Wan, Jian Fei and Zhu-Gang Wang

Obesity and type 2 diabetes (T2D) are both complicated endocrine disorders resulting from an interaction between multiple predisposing genes and environmental triggers, while diet and exercise have key influence on metabolic disorders. Previous reports demonstrated that 2-aminoadipic acid (2-AAA), an intermediate metabolite of lysine metabolism, could modulate insulin secretion and predict T2D, suggesting the role of 2-AAA in glycolipid metabolism. Here, we showed that treatment of diet-induced obesity (DIO) mice with 2-AAA significantly reduced body weight, decreased fat accumulation and lowered fasting glucose. Furthermore, Dhtkd1−/− mice, in which the substrate of DHTKD1 2-AAA increased to a significant high level, were resistant to DIO and obesity-related insulin resistance. Further study showed that 2-AAA induced higher energy expenditure due to increased adipocyte thermogenesis via upregulating PGC1α and UCP1 mediated by β3AR activation, and stimulated lipolysis depending on enhanced expression of hormone-sensitive lipase (HSL) through activating β3AR signaling. Moreover, 2-AAA could alleviate the diabetic symptoms of db/db mice. Our data showed that 2-AAA played an important role in regulating glycolipid metabolism independent of diet and exercise, implying that improving the level of 2-AAA in vivo could be developed as a strategy in the treatment of obesity or diabetes.

Free access

Te Du, Liu Yang, Xu Xu, Xiaofan Shi, Xin Xu, Jian Lu, Jianlu Lv, Xi Huang, Jing Chen, Heyao Wang, Jiming Ye, Lihong Hu and Xu Shen

Vincamine, a monoterpenoid indole alkaloid extracted from the Madagascar periwinkle, is clinically used for the treatment of cardio-cerebrovascular diseases, while also treated as a dietary supplement with nootropic function. Given the neuronal protection of vincamine and the potency of β-cell amelioration in treating type 2 diabetes mellitus (T2DM), we investigated the potential of vincamine in protecting β-cells and ameliorating glucose homeostasis in vitro and in vivo. Interestingly, we found that vincamine could protect INS-832/13 cells function by regulating G-protein-coupled receptor 40 (GPR40)/cAMP/Ca2+/IRS2/PI3K/Akt signaling pathway, while increasing glucose-stimulated insulin secretion (GSIS) by modulating GPR40/cAMP/Ca2+/CaMKII pathway, which reveals a novel mechanism underlying GPR40-mediated cell protection and GSIS in INS-832/13 cells. Moreover, administration of vincamine effectively ameliorated glucose homeostasis in either HFD/STZ or db/db type 2 diabetic mice. To our knowledge, our current work might be the first report on vincamine targeting GPR40 and its potential in the treatment of T2DM.

Open access

Shisan Xu, Fangjing Xie, Li Tian, Samane Fallah, Fatemeh Babaei, Sinai HC Manno, Francis A. M. Manno III, Lina Zhu, Kin Fung Wong, Yimin Liang, Rajkumar Ramalingam, Lei Sun, Xin Wang, Rorbert Plumb, Lee Gethings, Yun Wah Lam and Skuk Han Cheng

Sexual differences have been observed in the onset and prognosis of human cardiovascular diseases, but the underlying mechanisms are not clear. Here, we found that zebrafish heart regeneration is faster in females, can be accelerated by estrogen and is suppressed by the estrogen-antagonist tamoxifen. Injuries to the zebrafish heart, but not other tissues, increased plasma estrogen levels and the expression of estrogen receptors, especially esr2a. The resulting endocrine disruption induces the expression of the female-specific protein vitellogenin in male zebrafish. Transcriptomic analyses suggested heart injuries triggered pronounced immune and inflammatory responses in females. These responses, previously shown to elicit heart regeneration, could be enhanced by estrogen treatment in males and reduced by tamoxifen in females. Furthermore, a prior exposure to estrogen preconditioned the zebrafish heart for an accelerated regeneration. Altogether, this study reveals that heart regeneration is modulated by an estrogen-inducible inflammatory response to cardiac injury. These findings elucidate a previously unknown layer of control in zebrafish heart regeneration and provide a new model system for the study of sexual differences in human cardiac repair.