Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Y Oiso x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

A Suzuki, J Shinoda, Y Oiso, and O Kozawa


We have previously reported that extracellular ATP stimulates Ca2+ influx from extracellular space, resulting in the production of prostaglandin E2 which mediates, at least in part, its proliferative effect on osteoblast-like MC3T3-E1 cells, and that the activation of protein kinase C (PKC) stimulates phospholipase D in these cells. In the present study, we examined the effect of extracellular ATP on phosphatidylcholine-hydrolysing phospholipase D activity in MC3T3-E1 cells. ATP stimulated the formation of both choline and inositol phosphates dose-dependently in the range between 0·1 and 1 mm. The formation of choline by a combination of ATP and NaF, an activator of GTP-binding protein, was synergistic, whereas that of inositol phosphates was not. A combination of ATP and 12-O-tetradecanoylphorbol-13-acetate, a PKC activating phorbol ester, additively stimulated the formation of choline. Staurosporine, an inhibitor of PKC, had little effect on ATP-stimulated formation of choline. Choline formation was significantly reduced by chelating extracellular Ca2+ with EGTA, while being inhibited by W-7, an antagonist of calmodulin. These results suggest that extracellular ATP stimulates phospholipase D in a Ca2+/calmodulin-dependent manner in osteoblast-like cells, and that neither PKC activation nor GTP-binding protein is involved in this mechanism.

Journal of Endocrinology (1995) 145, 81–86

Free access

H Tokuda, K Hirade, X Wang, Y Oiso, and O Kozawa

We previously reported that basic fibroblast growth factor (FGF-2) activates p44/p42 mitogen-activated protein (MAP) kinase resulting in the stimulation of vascular endothelial growth factor (VEGF) release in osteoblast-like MC3T3-E1 cells and that FGF-2-activated p38 MAP kinase negatively regulates VEGF release. In the present study, we investigated the involvement of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in FGF-2-induced VEGF release in these cells. FGF-2 markedly induced the phosphorylation of SAPK/JNK. SP600125, an inhibitor of SAPK/JNK, markedly reduced the FGF-2-induced VEGF release. SP600125 suppressed the FGF-2-induced phosphorylation of SAPK/JNK without affecting the phosphorylation of p44/p42 MAP kinase or p38 MAP kinase induced by FGF-2. PD98059, an inhibitor of upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase, failed to affect the FGF-2-induced phosphorylation of SAPK/JNK. A combination of SP600125 and SB203580 suppressed the FGF-2-stimulated VEGF release in an additive manner. These results strongly suggest that FGF-2 activates SAPK/JNK in osteoblasts, and that SAPK/JNK plays a part in FGF-2-induced VEGF release.

Free access

H Yokoi, H Nagasaki, K Tachikawa, H Arima, T Murase, Y Miura, M Hirabayashi, and Y Oiso

Prolonged exposure of tissues to a receptor agonist often leads to adaptive changes that limit the subsequent responsiveness of the tissue to the same agonist. Recently, we have generated rats transgenic for the metallothionein I-human arginine vasopressin (AVP) fusion gene (Tg), which produced high plasma AVP with relatively preserved renal water excretion, suggesting that there might be adaptive mechanism(s) for maintaining water and electrolyte homeostasis against chronic AVP oversecretion from the earliest stage of life. In this study, to investigate whether down-regulation of AVP V2 receptor (V2R), which could possibly be caused by long-standing high plasma AVP, participates in this adaptive mechanism(s), non-peptidic V2R antagonist OPC31260 was administered to reverse the down-regulation, and water loading was performed after V2R antagonist treatment had been withdrawn. Additionally, to confirm the down-regulation, Northern blotting analysis for V2R mRNA was carried out. Tg rats showed slightly decreased urine volume and water intake with an equivalent plasma [Na(+)] level (Tg 140.4 +/- 0.6 mEq/l; control 139.3 +/- 0.6 mEq/l) under basal conditions. After water loading using a liquid diet containing zinc, which stimulates the promoter region in the transgene, the urine increase showed only limited suppression with a dramatically increased plasma AVP level and mild hyponatremia (135.8 +/- 1.8 mEq/l) in Tg rats. When diet containing OPC31260 had been provided for 4 days until the day before the start of water loading, antidiuresis and hyponatremia (125.4 +/- 1.mEq/l) were significantly potentiated. V2R mRNA expression in kidney was significantly less in Tg rats than in control rats under basal conditions, and this suppression was restored by OPC31260 treatment to levels comparable with those of control rats. These results suggest that long-standing high plasma AVP causes V2R down-regulation, and it may play an important role in the adaptive mechanism(s) for maintaining water and electrolyte homeostasis in chronically AVP-overexpressing rats.

Free access

H Nagasaki, H Yokoi, H Arima, M Hirabayashi, S Ishizaki, K Tachikawa, T Murase, Y Miura, and Y Oiso

Arginine vasopressin (AVP) is a major antidiuretic hormone, the overproduction of which causes diluting hyponatremia in humans and is called the syndrome of inappropriate antidiuresis (SIAD). To study physiological changes resulting from AVP overproduction and to develop an animal model of hyponatremia, the human AVP gene was expressed under the control of the metallothionein promoter in transgenic (Tg) rats. Analyses of AVP immunoreactivity (irAVP) in the tissues revealed that the transgene is expressed mainly in the central nervous system. Gel filtration showed that irAVP in the brain and plasma was properly processed AVP. AVP purified from the brains of both Tg and control rats also exerted equal bioactivity to generate cAMP in LLC-PK1 cells. The founder rats did not show any physical or anatomical abnormalities. Under basal conditions, Tg rats had high plasma AVP levels (Tg 13.8 +/- 2.5 pg/ml; control 2.7 +/- 1.2 pg/ml; n=6 in both groups; means +/- S.E.M.), decreased urine volume, and normal plasma [Na(+)]. Hypertonic saline injected i.p. did not affect AVP secretion in Tg rats. In response to a zinc-supplemented liquid diet, plasma AVP decreased in control rats, but increased in Tg rats (Tg 32.7 +/- 2.7 pg/ml; control 1.0+/-0.1 pg/ml; n=6), resulting in hyponatremia (Tg 135.2 +/- 2.5 mEq/l; control 140.8 +/- 0.4 mEq/l; n=6). To our knowledge, this is the first transgenic animal to show diluting hyponatremia. This transgenic rat may therefore provide a useful model in which to investigate various physiological alterations resulting from the oversecretion of AVP which involve SIAD, stress response, behavior, and blood pressure.