Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Yan Shen x
Clear All Modify Search
Full access

Wanbao Yang, Hui Yan, Quan Pan, James Zheng Shen, Fenghua Zhou, Chaodong Wu, Yuxiang Sun and Shaodong Guo

Glucagon promotes hepatic glucose production maintaining glucose homeostasis in the fasting state. Glucagon maintains at high level in both diabetic animals and human, contributing to hyperglycemia. Mitochondria, a major place for glucose oxidation, are dysfunctional in diabetic condition. However, whether hepatic mitochondrial function can be affected by glucagon remains unknown. Recently, we reported that FOXO1 is an important mediator in glucagon signaling in control of glucose homeostasis. In this study, we further assessed the role of FOXO1 in the action of glucagon in the regulation of hepatic mitochondrial function. We found that glucagon decreased the heme production in a FOXO1-dependent manner, suppressed heme-dependent complex III (UQCRC1) and complex IV (MT-CO1) and inhibited hepatic mitochondrial function. However, the suppression of mitochondrial function by glucagon was largely rescued by deleting the Foxo1 gene in hepatocytes. Glucagon tends to reduce hepatic mitochondrial biogenesis by attenuating the expression of NRF1, TFAM and MFN2, which is mediated by FOXO1. In db/db mice, we found that hepatic mitochondrial function was suppressed and expression levels of UQCRC1, MT-CO1, NRF1 and TFAM were downregulated in the liver. These findings suggest that hepatic mitochondrial function can be impaired when hyperglucagonemia occurs in the patients with diabetes mellitus, resulting in organ failure.

Free access

Xin-gang Yao, Xin Xu, Gai-hong Wang, Min Lei, Ling-ling Quan, Yan-hua Cheng, Ping Wan, Jin-pei Zhou, Jing Chen, Li-hong Hu and Xu Shen

Impaired glucose-stimulated insulin secretion (GSIS) and increasing β-cell death are two typical dysfunctions of pancreatic β-cells in individuals that are destined to develop type 2 diabetes, and improvement of β-cell function through GSIS enhancement and/or inhibition of β-cell death is a promising strategy for anti-diabetic therapy. In this study, we discovered that the small molecule, N-(2-benzoylphenyl)-5-bromo-2-thiophenecarboxamide (BBT), was effective in both potentiating GSIS and protecting β-cells from cytokine- or streptozotocin (STZ)-induced cell death. Results of further studies revealed that cAMP/PKA and long-lasting (L-type) voltage-dependent Ca2 + channel/CaMK2 pathways were involved in the action of BBT against GSIS, and that the cAMP/PKA pathway was essential for the protective action of BBT on β-cells. An assay using the model of type 2 diabetic mice induced by high-fat diet combined with STZ (STZ/HFD) demonstrated that BBT administration efficiently restored β-cell functions as indicated by the increased plasma insulin level and decrease in the β-cell loss induced by STZ/HFD. Moreover, the results indicated that BBT treatment decreased fasting blood glucose and HbA1c and improved oral glucose tolerance further highlighting the potential of BBT in anti-hyperglycemia research.

Full access

Wang-Yang Xu, Yan Shen, Houbao Zhu, Junhui Gao, Chen Zhang, Lingyun Tang, Shun-Yuan Lu, Chun-Ling Shen, Hong-Xin Zhang, Ziwei Li, Peng Meng, Ying-Han Wan, Jian Fei and Zhu-Gang Wang

Obesity and type 2 diabetes (T2D) are both complicated endocrine disorders resulting from an interaction between multiple predisposing genes and environmental triggers, while diet and exercise have key influence on metabolic disorders. Previous reports demonstrated that 2-aminoadipic acid (2-AAA), an intermediate metabolite of lysine metabolism, could modulate insulin secretion and predict T2D, suggesting the role of 2-AAA in glycolipid metabolism. Here, we showed that treatment of diet-induced obesity (DIO) mice with 2-AAA significantly reduced body weight, decreased fat accumulation and lowered fasting glucose. Furthermore, Dhtkd1−/− mice, in which the substrate of DHTKD1 2-AAA increased to a significant high level, were resistant to DIO and obesity-related insulin resistance. Further study showed that 2-AAA induced higher energy expenditure due to increased adipocyte thermogenesis via upregulating PGC1α and UCP1 mediated by β3AR activation, and stimulated lipolysis depending on enhanced expression of hormone-sensitive lipase (HSL) through activating β3AR signaling. Moreover, 2-AAA could alleviate the diabetic symptoms of db/db mice. Our data showed that 2-AAA played an important role in regulating glycolipid metabolism independent of diet and exercise, implying that improving the level of 2-AAA in vivo could be developed as a strategy in the treatment of obesity or diabetes.