Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Yi Ding x
  • All content x
Clear All Modify Search
Free access

Hong Ma, Jin Yuan, Jinyu Ma, Jie Ding, Weiwei Lin, Xinlei Wang, Mingliang Zhang, Yi Sun, Runze Wu, Chun Liu, Cheng Sun, and Yunjuan Gu

Bone morphogenetic protein 7 (BMP7), a member of the transforming growth factor-β (TGF-β) family, plays pivotal roles in energy expenditure. However, whether and how BMP7 regulates hepatic insulin sensitivity is still poorly understood. Here, we show that hepatic BMP7 expression is reduced in high-fat diet (HFD)-induced diabetic mice and palmitate (PA)-induced insulin-resistant HepG2 and AML12 cells. BMP7 improves insulin signaling pathway in insulin resistant hepatocytes. On the contrary, knockdown of BMP7 further impairs insulin signal transduction in PA-treated cells. Increased expression of BMP7 by adenovirus expressing BMP7 improves hyperglycemia, insulin sensitivity and insulin signal transduction. Furthermore, BMP7 inhibits mitogen-activated protein kinases (MAPKs) in both the liver of obese mice and PA-treated cells. In addition, inhibition of MAPKs recapitulates the effects of BMP7 on insulin signal transduction in cultured hepatocytes treated with PA. Activation of p38 MAPK abolishes the BMP7-mediated upregulation of insulin signal transduction both in vitro and in vivo. Together, our results show that hepatic BMP7 has a novel function in regulating insulin sensitivity through inhibition of MAPKs, thus providing new insights into treating insulin resistance-related disorders such as type 2 diabetes.

Restricted access

Junling He, Yi Ding, Natalia Nowik, Charel Jager, Muhamed N H Eeza, A Alia, Hans J Baelde, and Herman P Spaink

Leptin is a hormone which functions in the regulation of energy homeostasis via suppression of appetite. In zebrafish, there are two paralogous genes encoding leptin, called lepa and lepb. In a gene expression study, we found that the lepb gene, not the lepa gene, was significantly downregulated under the state of insulin-resistance in zebrafish larvae, suggesting that the lepb plays a role in glucose homeostasis. In the current study, we characterised lepb-deficient (lepb −/−) adult zebrafish generated via a CRISPR-CAS9 gene editing approach by investigating whether the disruption of the lepb gene would result in the development of type 2 diabetes mellitus (T2DM) and diabetic complications. We observed that lepb −/− adult zebrafish had an increase in body weight, length and visceral fat accumulation, compared to age-matched control zebrafish. In addition, lepb −/− zebrafish had significantly higher blood glucose levels compared to control zebrafish. These data collectively indicate that lepb −/− adult zebrafish display the features of T2DM. Furthermore, we showed that lepb −/− adult zebrafish had glomerular hypertrophy and thickening of the glomerular basement membrane, compared to control zebrafish, suggesting that lepb −/− adult zebrafish develop early signs of diabetic nephropathy. In conclusion, our results demonstrate that lepb regulates glucose homeostasis and adiposity in zebrafish, and suggest that lepb −/− mutant zebrafish are a promising model to investigate the role of leptin in the development of T2DM and are an attractive model to perform mechanistic and therapeutic research in T2DM and its complications.