Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Ying Zhao x
  • All content x
Clear All Modify Search
Free access

Yuxun Zhou, Wangsheng Zhu, Zhengxia Guo, Ying Zhao, Zijun Song, and Junhua Xiao

The timing of puberty is a complex trait which is regulated by environmental and genetic factors, but the detailed regulatory mechanism remains elusive. Maternal nutrition administration during late gestation in rats revealed that the time of onset of puberty in daughter rats was influenced by the mother’s nutritional and physiological status during the embryonic development period. In this study, the potential effects of the maternal nuclear genome on the timing of puberty of offspring were investigated. Two inbred strains of mice (C3H/HeJ (C3H) and C57BL/6J (B6)) were used to set up two pedigrees (direct and reciprocal crosses), and the timing of puberty in all these mice (parent, F1 and F2) was recorded (the females were assessed by vaginal opening (VO) and the males by balano preputial separation (BPS)). The results from data of 822 mice showed that: 1) in female mice, the heritability of the timing of puberty in direct and reciprocal crosses is 68.51% and 63.97% respectively; 2) in female mice, a significant difference in the timing of puberty is observed between B6 and C3H (P = 3.7 × 10−13) mice as well as between direct and reciprocal F1 hybrids (P = 5.4 × 10−3), but not between direct and reciprocal F2 hybrids (P = 0.0941); 3) in male mice, direct and reciprocal F1 hybrids differ significantly from each other in the timing of BPS (P = 2.7 × 10−7), while such differences vanish in their male progenitor and progeny. The significant discrepancy between direct and reciprocal crosses in F1 but not in either cross of F2 hybrids reveals that the maternal nuclear genome has effects on the timing of puberty in mice progeny, probably through imprinting genes or the genes associated with intra-uterine physiological status.

Free access

Ying Zhao, Qinghua Fang, Susanne G Straub, Manfred Lindau, and Geoffrey W G Sharp

Prostaglandins inhibit insulin secretion in a manner similar to that of norepinephrine (NE) and somatostatin. As NE inhibits endocytosis as well as exocytosis, we have now examined the modulation of endocytosis by prostaglandin E1 (PGE1). Endocytosis following exocytosis was recorded by whole-cell patch clamp capacitance measurements in INS-832/13 cells. Prolonged depolarizing pulses producing a high level of Ca2+ influx were used to stimulate maximal exocytosis and to deplete the readily releasable pool (RRP) of granules. This high Ca2+ influx eliminates the inhibitory effect of PGE1 on exocytosis and allows specific characterization of the inhibitory effect of PGE1 on the subsequent compensatory endocytosis. After stimulating exocytosis, endocytosis was apparent under control conditions but was inhibited by PGE1 in a Pertussis toxin-sensitive (PTX)-insensitive manner. Dialyzing a synthetic peptide mimicking the C-terminus of the α-subunit of the heterotrimeric G-protein Gz into the cells blocked the inhibition of endocytosis by PGE1, whereas a control-randomized peptide was without effect. These results demonstrate that PGE1 inhibits endocytosis and Gz mediates the inhibition.

Free access

Shibin Ding, Ying Fan, Nana Zhao, Huiqin Yang, Xiaolei Ye, Dongliang He, Xin Jin, Jian Liu, Chong Tian, Hongyu Li, Shunqing Xu, and Chenjiang Ying

Epidemiological findings on the association between bisphenol A (BPA, 2,2-bis-(4-hydroxyphenyl)propane) exposure and type 2 diabetes mellitus (T2DM) are paradoxical. In animal studies, BPA has been shown to disrupt pancreatic function and blood glucose homeostasis even at a reference ‘safe’ level during perinatal period. In this study, we explored the effects of long-term paternal exposure to a ‘safe’ level of BPA on parents themselves and their offspring. Adult male genitor rats fed with either standard chow diet (STD) or high-fat diet (HFD) were treated respectively with either vehicle or BPA (50 μg/kg per day) for 35 weeks. The male rats treated with vehicle or BPA for 21 weeks were then used as sires, and the adult female rats were fed with STD during the gestation and lactation. Offspring rats were weaned on postnatal day 21 and fed with STD in later life. Metabolic parameters were recorded on the adult male rats and their adult offspring. BPA exposure disrupted glucose homeostasis and pancreatic function, and HFD aggravated these adverse effects. However, BPA exposure did not alter body weight, body fat percentage, or serum lipid. In addition, the paternal BPA exposure did not cause adverse reproductive consequence or metabolic disorder in the adult offspring. Our findings indicate that chronic exposure to a predicted ‘safe’ dose of BPA contributes to glucose metabolic disorders, and that HFD aggravates these adverse effects in paternal rats.

Restricted access

Qiaoli Cui, Yijing Liao, Yaojing Jiang, Xiaohang Huang, Weihong Tao, Quanquan Zhou, Anna Shao, Ying Zhao, Jia Li, Anran Ma, Zhihong Wang, Li Zhang, Zunyuan Yang, Yinan Liang, Minglin Wu, Zhenyan Yang, Wen Zeng, and Qinghua Wang

Glucagon-like peptide 1 (GLP-1) is an insulinotropic hormone and plays an important role in regulating glucose homeostasis. GLP-1 has a short half-life (t1/2<2 min) due to degrading enzyme dipeptidyl peptidase-IV and rapid kidney clearance, which limits its clinical application as a therapeutic reagent. We demonstrated recently that supaglutide, a novel GLP-1 mimetic generated by recombinant fusion protein techniques, exerted hypoglycemic and beta cell trophic effects in type 2 diabetes db/db mice. In the present study, we examined supaglutide’s therapeutic efficacy and pharmacokinetics in diabetic rhesus monkeys. We found that a single subcutaneous injection of supaglutide of tested doses transiently and significantly reduced blood glucose levels in a dose-dependent fashion in the diabetic monkeys. During a 4-weeks intervention period, treatment of supaglutide of weekly dosing dose-dependently decreased fasting and random blood glucose levels. This was associated with significantly declined plasma fructosamine levels. The repeated administration of supaglutide remarkably also decreased body weight in a dose-dependent fashion accompanied by decreased food intake. Intravenous glucose tolerance test results showed that supaglutide improved glucose tolerance. The intervention also showed enhanced glucose-stimulated insulin secretion and improved lipid profile in diabetic rhesus monkeys. These results reveal that supaglutide exerts beneficial effects in regulating blood glucose and lipid homeostasis in diabetic rhesus monkeys.