Search Results
You are looking at 1 - 1 of 1 items for
- Author: Yoshihiko Kitada x
- Refine by access: All content x
Search for other papers by Koichiro Taguchi in
Google Scholar
PubMed
Search for other papers by Kazuo Kajita in
Google Scholar
PubMed
Search for other papers by Yoshihiko Kitada in
Google Scholar
PubMed
Search for other papers by Masayuki Fuwa in
Google Scholar
PubMed
Search for other papers by Motochika Asano in
Google Scholar
PubMed
Search for other papers by Takahide Ikeda in
Google Scholar
PubMed
Search for other papers by Toshiko Kajita in
Google Scholar
PubMed
Search for other papers by Tatsuo Ishizuka in
Google Scholar
PubMed
Search for other papers by Itaru Kojima in
Google Scholar
PubMed
Search for other papers by Hiroyuki Morita in
Google Scholar
PubMed
Despite extensive investigation, the mechanisms underlying adipogenesis are not fully understood. We previously identified proliferative cells in adipose tissue expressing adipocyte-specific genes, which were named small proliferative adipocytes (SPA). In this study, we investigated the characteristics and roles of SPA in adipose tissue. Epididymal and inguinal fat was digested by collagenase, and then SPA were separated by centrifugation from stromal vascular cells (SVC) and mature white adipocytes. To clarify the feature of gene expression in SPA, microarray and real-time PCR were performed. The expression of adipocyte-specific genes and several neuronal genes was increased in the order of SVC < SPA < mature white adipocytes. In addition, proliferin was detected only in SPA. SPA differentiated more effectively into lipid-laden cells than SVC. Moreover, differentiated SPA expressed uncoupling protein 1 and mitochondria-related genes more than differentiated SVC. Treatment of SPA with pioglitazone and CL316243, a specific β3-adrenergic receptor agonist, differentiated SPA into beige-like cells. Therefore, SPA are able to differentiate into beige cells. SPA isolated from epididymal fat (epididymal SPA), but not SPA from inguinal fat (inguinal SPA), expressed a marker of visceral adipocyte precursor, WT1. However, no significant differences were detected in the expression levels of adipocyte-specific genes or neuronal genes between epididymal and inguinal SPA. The ability to differentiate into lipid-laden cells in epididymal SPA was a little superior to that in inguinal SPA, whereas the ability to differentiate into beige-like cells was greater in inguinal SPA than epididymal SPA. In conclusion, SPA may be progenitors of beige cells.