Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Yoshihiro Takahashi x
  • All content x
Clear All Modify Search
Free access

Yoshihiro Suzuki, Yohei Kurose, Hideyuki Takahashi, Sadaki Asakuma, Yoshiyuki Azuma, and Shigeki Kobayashi

This study was conducted to examine the contributions of central and peripheral leptin to hyperphagia in lactation. Lactating rats were mated at 7–8 weeks of age and housed singly with their litters. In experiment 1, food intakes were significantly (P<0.01) greater (350% on average) in lactation than in non-lactation throughout a day. Cerebrospinal fluid (CSF) leptin levels remained constant despite plasma leptin levels being significantly (P<0.05) greater in non-lactation than in lactation. In experiment 2, CSF leptin levels were not altered by i.v. injections of leptin (0.2 and 0.4 mg/kg body weight) despite that plasma leptin levels were dose dependently (P<0.01) increased. Moreover, i.v. administration of leptin significantly (P<0.05) decreased food intake in non-lactating rats but not in lactating rats. In experiment 3, nocturnal food intakes were temporarily (P<0.05) reduced in non-lactating and lactating rats. I.c.v. administration of a leptin antagonist (15 μg) blocked the reductions of food intakes. I.c.v. administration of leptin (10 μg) significantly (P<0.05) decreased cumulative food intakes during 24 h in both the physiological states. In conclusion, this study has presented new evidence that the hyperphagia of lactating rats could be partly due to depressed sensitivity of neurons contacting blood leptin. In contrast, the responsiveness of leptin receptors contacting CSF leptin may not differ between non-lactating and lactating rats. Furthermore, the levels of CSF leptin remained constant independent of those of blood leptin. Therefore, the expression of hypothalamic leptin receptors contacting CSF could be involved in the difference in food intake between non-lactating and lactating rats.

Free access

Hideyuki Takahashi, Yohei Kurose, Muneyuki Sakaida, Yoshihiro Suzuki, Shigeki Kobayashi, Toshihisa Sugino, Masayasu Kojima, Kenji Kangawa, Yoshihisa Hasegawa, and Yoshiaki Terashima

The present study was conducted to investigate roles of ghrelin in glucose-induced insulin secretion in fasting- and meal-fed state in sheep. Castrated Suffolk rams were fed a maintenance diet of alfalfa hay cubes once a day. Hyperglycemic clamp (HGC) was carried out to examine glucose-induced insulin response from 48 to 53 h (fasting state) and from 3 to 8 h (meal-fed state) after feeding in Experiment 1 and 2 respectively. Total dose of 70 nmol/kg body weight of d-Lys3-GHRP6, a GH secretagogue receptor 1a (GHS-R1a) antagonist, was intravenously administered at 0, 60, and 120 min after the commencement of HGC. In the fasting state, the ghrelin antagonist significantly (P < 0.01) enhanced glucose-induced insulin secretion. In the meal-fed state, i.v. administration of synthetic ovine ghrelin (0.04 μ g/kg body weight per min during HGC) significantly (P < 0.05) enhanced glucose-induced insulin secretion. d-Lys3-GHRP6 treatment suppressed ghrelin-induced enhancement of the insulin secretion. In conclusion, ghrelin has an inhibitory and stimulatory role in glucose-induced insulin secretion via GHS-R1a in fasting- and meal-fed state respectively.

Restricted access

Ken Takao, Katsumi Iizuka, Yanyan Liu, Teruaki Sakurai, Sodai Kubota, Saki Kubota-Okamoto, Toshinori Imaizumi, Yoshihiro Takahashi, Yermek Rakhat, Satoko Komori, Tokuyuki Hirose, Kenta Nonomura, Takehiro Kato, Masami Mizuno, Testuya Suwa, Yukio Horikawa, Masakatsu Sone, and Daisuke Yabe

Carbohydrate response element binding protein (ChREBP) is critical in the regulation of fatty acid and triglyceride synthesis in the liver. Interestingly, Chrebp-/- mice show reduced levels of plasma cholesterol, which is critical for steroid hormone synthesis in adrenal glands. Furthermore, Chrebp mRNA expression was previously reported in human adrenal glands. Thus, it remains to be investigated whether ChREBP plays a role directly or indirectly in steroid hormone synthesis and release in adrenal glands. In the present study, we find that Chrebp mRNA is expressed in mouse adrenal glands and that ChREBP binds to carbohydrate response elements. Histological analysis of Chrebp-/- mice shows no adrenal hyperplasia and less oil red O staining compared with that in wild-type mice. In adrenal glands of Chrebp-/- mice, expression of Fasn and Scd1, two enzymes critical for fatty acid synthesis, was substantially lower and triglyceride content was reduced. Expression of Srebf2, a key transcription factor controlling synthesis and uptake of cholesterol and the target genes was upregulated, while cholesterol content was not significantly altered in the adrenal glands of Chrebp-/- mice. Adrenal corticosterone content and plasma adrenocorticotropic hormone and corticosterone levels were not significantly altered in Chrebp-/- mice. Consistently, expression of genes related to steroid hormone synthesis was not altered. Corticosterone secretion in response to two different stimuli, namely 24-h starvation and cosyntropin administration, were also not altered in Chrebp-/- mice. Taking these results together, corticosterone synthesis and release were not affected in Chrebp-/- mice despite reduced plasma cholesterol levels.