Search Results
You are looking at 1 - 2 of 2 items for
- Author: Yoshito Terai x
- Refine by access: All content x
Search for other papers by Yoshihiro Joshua Ono in
Google Scholar
PubMed
Search for other papers by Yoshito Terai in
Google Scholar
PubMed
Search for other papers by Akiko Tanabe in
Google Scholar
PubMed
Search for other papers by Atsushi Hayashi in
Google Scholar
PubMed
Search for other papers by Masami Hayashi in
Google Scholar
PubMed
Search for other papers by Yoshiki Yamashita in
Google Scholar
PubMed
Search for other papers by Satoru Kyo in
Google Scholar
PubMed
Search for other papers by Masahide Ohmichi in
Google Scholar
PubMed
Dienogest, a synthetic progestin, has been shown to be effective against endometriosis, although it is still unclear as to how it affects the ectopic endometrial cells. Decorin has been shown to be a powerful endogenous tumor repressor acting in a paracrine fashion to limit tumor growth. Our objectives were to examine the direct effects of progesterone and dienogest on the in vitro proliferation of the human ectopic endometrial epithelial and stromal cell lines, and evaluate as to how decorin contributes to this effect. We also examined DCN mRNA expression in 50 endometriosis patients. The growth of both cell lines was inhibited in a dose-dependent manner by both decorin and dienogest. Using a chromatin immunoprecipitation assay, it was noted that progesterone and dienogest directly induced the binding of the decorin promoter in the EMOsis cc/TERT cells (immortalized human ovarian epithelial cells) and CRL-4003 cells (immortalized human endometrial stromal cells). Progesterone and dienogest also led to significant induced cell cycle arrest via decorin by promoting production of p21 in both cell lines in a dose-dependent manner. Decorin also suppressed the expression of MET in both cell lines. We confirmed that DCN mRNA expression in patients treated with dienogest was higher than that in the control group. In conclusion, decorin induced by dienogest appears to play a crucial role in suppressing endometriosis by exerting anti-proliferative effects and inducing cell cycle arrest via the production of p21 human ectopic endometrial cells and eutopic endometrial stromal cells.
Search for other papers by Daisuke Fujita in
Google Scholar
PubMed
Search for other papers by Akiko Tanabe in
Google Scholar
PubMed
Search for other papers by Tatsuharu Sekijima in
Google Scholar
PubMed
Search for other papers by Hekiko Soen in
Google Scholar
PubMed
Search for other papers by Keijirou Narahara in
Google Scholar
PubMed
Search for other papers by Yoshiki Yamashita in
Google Scholar
PubMed
Search for other papers by Yoshito Terai in
Google Scholar
PubMed
Search for other papers by Hideki Kamegai in
Google Scholar
PubMed
Search for other papers by Masahide Ohmichi in
Google Scholar
PubMed
During human pregnancy, trophoblasts play an important role in embryo implantation and placental development. Cytotrophoblast cells invade the uterine spiral arteries and differentiate into extravillous trophoblasts, resulting in the remodeling of the uterine vessels and fetoplacental vasculature. During early pregnancy, a physiologically hypoxic environment induces the production of angiogenic factors, such as vascular endothelial growth factor (VEGF), which are suggested to locally control the vascular remodeling. Endoglin, a cell-surface coreceptor for transforming growth factor-β1, is highly expressed in endothelial cells and syncytiotrophoblasts, and can be associated with endothelial nitric oxide synthase and vascular homeostasis. Several studies have recently suggested that some pregnancy-related complications, such as preeclampsia, have their origins early in pregnancy as a result of abnormalities in implantation and placental development. Although angiogenic factors are recognized as key molecules in placental development, little is known about the mechanism(s) of their regulation in trophoblasts. In this study, we elucidated the mechanisms underlying the regulation of VEGF and endoglin production under hypoxic conditions in the trophoblast-derived cell line, BeWo. We evaluated the role of the AKT–MTOR cascade and ERK kinase in the expression of VEGF and endoglin in response to hypoxia using various kinase inhibitors and small interfering RNA targeted against hypoxia-inducible factor (HIF)-1α (listed as HIF1A in Hugo Database). Our results suggest that both the phosphatidylinositol 3-kinase–AKT–MTOR–HIF-1α and ERK–HIF-1α signaling pathways are crucial for increasing VEGF and endoglin expression in response to hypoxia in BeWo cells.