Search Results

You are looking at 1 - 10 of 15 items for

  • Author: Yu Wang x
  • All content x
Clear All Modify Search
Free access

Jing Li, Pan-Pan Zhao, Ting Hao, Dan Wang, Yu Wang, Yang-Zi Zhu, Yu-Qing Wu, and Cheng-Hua Zhou

Urotensin II (U-II), a cyclic peptide originally isolated from the caudal neurosecretory system of fishes, can produce proinflammatory effects through its specific G protein-coupled receptor, GPR14. Neuropathic pain, a devastating disease, is related to excessive inflammation in the spinal dorsal horn. However, the relationship between U-II and neuropathic pain has not been reported. This study was designed to investigate the effect of U-II antagonist on neuropathic pain and to understand the associated mechanisms. We reported that U-II and its receptor GPR14 were persistently upregulated and activated in the dorsal horn of L4–6 spinal cord segments after chronic constriction injury (CCI) in rats. Intrathecal injection of SB657510, a specific antagonist against U-II, reversed CCI-induced thermal hyperalgesia and mechanical allodynia. Furthermore, we found that SB657510 reduced the expression of phosphorylated c-Jun N-terminal kinase (p-JNK) and nuclear factor-κB (NF-κB) p65 as well as subsequent secretion of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α). It was also showed that both the JNK inhibitor SP600125 and the NF-κB inhibitor PDTC significantly attenuated thermal hyperalgesia and mechanical allodynia in CCI rats. Our present research showed that U-II receptor antagonist alleviated neuropathic pain possibly through the suppression of the JNK/NF-κB pathway in CCI rats, which will contribute to the better understanding of function of U-II and pathogenesis of neuropathic pain.

Free access

Xuanchun Wang, Wei Gong, Yu Liu, Zhihong Yang, Wenbai Zhou, Mei Wang, Zhen Yang, Jie Wen, and Renming Hu

We report the identification of a novel secreted peptide, INM02. The mRNA transcript of human INM02 gene is about 3.0 kb. Its open-reading frame contains 762 bps and encodes a protein of 254 amino acids. Northern blot analysis demonstrates that INM02 mRNA is widely expressed in rat tissues, especially with abundant quantities in pancreatic islets, testis, and bladder tissue. We have expressed recombinant INM02 protein and generated rabbit anti-INM02 polyclonal antibodies. We show here that INM02 could be detectable in human serum by ELISA. We also present evidence that INM02 mRNA expression could be regulated by glucose. Experiments on both MIN6 cells and intact isolated islets demonstrate that INM02 mRNA levels are increased more than threefold by high glucose (25 mM) when compared with low glucose (5.5 mM). ELISA analysis shows that secretion of INM02 is significantly augmented by high glucose in vitro. It is speculated that as a novel secreted protein, INM02 is associated with functions of pancreatic islets, especially of β-cells.

Free access

Wang Xiao, Fei Beibei, Shen Guangsi, Jiang Yu, Zhang Wen, Huang Xi, and Xu Youjia

Postmenopausal osteoporosis is a metabolic disease associated with estrogen deficiency. The results of numerous studies have revealed the positive correlation between iron accumulation and postmenopausal osteoporotic status. Although the results of previous studies have indicated that estrogen or iron alone have an effect on bone metabolism, their combined effects are not well defined. Using an in vivo mouse model, we found that bone mass was minimally affected by an excess of iron in the presence of estrogen. Once the source of estrogen was removed (ovariectomy), iron accumulation significantly decreased bone mass. These effects were accompanied by fluctuations in the level of oxidative stress. To determine whether these effects were related to bone formation or bone resorption, primary osteoblasts (OBs), RAW264.7 cells, and bone-marrow-derived macrophages were used for i n vitro experiments. We found that iron accumulation did inhibit the activity of OBs. However, estrogen had little effect on this inhibition. In contrast, iron promoted osteoclast differentiation through the production of reactive oxygen species. Estrogen, a powerful reactive oxygen scavenger, suppressed this effect in osteoclasts. Our data provided direct evidence that iron affected the bone mass only in the absence of estrogen. The inhibitory effect of estrogen on iron-induced osteopenia was particularly relevant to bone resorption rather than bone formation.

Restricted access

Hui-Fang Wang, Qing-Qing Yu, Rui-Fang Zheng, and Ming Xu

Cardiovascular complications of type 2 diabetes mellitus (T2DM) are associated with vascular remodeling in the arteries. Perivascular sympathetic neurons release an abundance of trophic factors to regulate vascular function via a paracrine signaling. Netrin-1, a diffusible protein that can be secreted outside the cell, is one of common signals of ‘conversation’ between nerve and vessel. The present study investigated whether netrin-1 is a novel modulator of sympathetic neurons paracrine signaling and played a critical role in vascular adventitial remodeling under T2DM. Vascular adventitial remodeling was observed in adventitial fibroblasts (AFs) responding to netrin-1 deficiency in the supernatant from primary rat superior cervical ganglia (SCG) neurons, shown as AFs proliferation, migration, and collagen deposition. Conditioned medium from the high glucose (HG)-treated SCG neurons contributed to AFs remodeling, which was effectively alleviated by exogenous netrin-1 supplementation. Further, it was found that uncoordinated-5-B (Unc5b) was mainly expressed in AFs among netrin-1 specific receptors. Treatment of netrin-1 inhibited H2O2 production derived from NADPH oxidase 4 (NOX4) through the UNC5b/CAMP/PKA signal pathway in AFs remodeling. In vivo, aorta adventitial remodeling was accompanied with the downregulation of netrin-1 in the perivascular sympathetic nerve in T2DM rats. Such abnormalities were restored by netrin-1 intervention, which was associated with the inhibition of NOX4 expression in the aorta adventitia. In conclusion, netrin-1 is a novel modulator of sympathetic neurons paracrine signaling to maintain AFs function. Vascular adventitial remodeling was aggravated by sympathetic neurons paracrine signaling under hyperglycemia, which was ameliorated by netrin-1 treatment through the UNC5b/CAMP/PKA/NOX4 pathway.

Free access

Yu Wang, Airong Wu, Liting Xi, Ji Yang, Wenjing Zhou, Yuming Wang, Shuang Liang, Weixin Yu, Yue Wang, and Jinzhou Zhu

Free access

Shou-Si Lu, Yun-Li Yu, Hao-Jie Zhu, Xiao-Dong Liu, Li Liu, Yao-Wu Liu, Ping Wang, Lin Xie, and Guang-Ji Wang

Berberine (BBR), a hypoglycemic agent, has shown beneficial metabolic effects for anti-diabetes, but its precise mechanism was unclear. Glucagon-like peptide-1 (GLP-1) is considered to be an important incretin that can decrease hyperglycemia in the gastrointestinal tract after meals. The aim of this study was to investigate whether BBR exerts its anti-diabetic effects via modulating GCG secretion. Diabetes-like rats induced by streptozotocin received BBR (120 mg/kg per day, i.g) for 5 weeks. Two hours following the last dose, the rats were anaesthetized and received 2.5 g/kg glucose by gavage. At 15-minute and 30-minute after glucose load, blood samples, pancreas, and intestines were obtained to measure insulin and GCG using ELISA kit. The number of L cells in the ileum and β-cells in the pancreas were identified using immunohistology. The expression of proglucagon mRNA in the ileum was measured by RT-PCR. The results indicated that BBR treatment significantly increased GCG levels in plasma and intestine (P<0.05) accompanied with the increase of proglucagon mRNA expression and the number of L-cell compared with the controls (P<0.05). Furthermore, BBR increased insulin levels in plasma and pancreas as well as β-cell number in pancreas. The data support the hypothesis that the anti-diabetic effects of BBR may partly result from enhancing GCG secretion.

Free access

Hong-Hui Wang, Qian Cui, Teng Zhang, Lei Guo, Ming-Zhe Dong, Yi Hou, Zhen-Bo Wang, Wei Shen, Jun-Yu Ma, and Qing-Yuan Sun

As a fat storage organ, adipose tissue is distributed widely all over the body and is important for energy supply, body temperature maintenance, organ protection, immune regulation and so on. In humans, both underweight and overweight women find it hard to become pregnant, which suggests that appropriate fat storage can guarantee the female reproductive capacity. In fact, a large mass of adipose tissue distributes around the reproductive system both in the male and female. However, the functions of ovary fat pad (the nearest adipose tissue to ovary) are not known. In our study, we found that the ovary fat pad-removed female mice showed decreased fertility and less ovulated mature eggs. We further identified that only a small proportion of follicles developed to antral follicle, and many follicles were blocked at the secondary follicle stage. The overall secretion levels of estrogen and FSH were lower in the whole estrus cycle (especially at proestrus); however, the LH level was higher in ovary fat pad-removed mice than that in control groups. Moreover, the estrus cycle of ovary fat pad-removed mice showed significant disorder. Besides, the expression of FSH receptor decreased, but the LH receptor increased in ovary fat pad-removed mice. These results suggest that ovary fat pad is important for mouse reproduction.

Free access

Jiashu Yu, Zhongyan Shan, Wei Chong, Jinyuan Mao, Yuxiu Geng, Caixia Zhang, Qian Xing, Weiwei Wang, Ningna Li, Chenling Fan, Hong Wang, Hongmei Zhang, and Weiping Teng

Acute and excessive iodine supplementation leads to iodine-induced thyroid cytotoxicity. Excessive oxidative stress has been suggested to be one of the underlying mechanisms in the development of thyroid cytotoxicity. The aim of this study was to investigate whether vitamin E (VE), an important antioxidant, could ameliorate iodine-induced thyroid cytotoxicity. A goiter was induced in rats by feeding a low-iodine (LI) diet for 12 weeks. Involution of hyperplasia was obtained by administering a twofold physiological dose of iodine in feeding water with/without the supplementation of 25-, 50-, or 100-fold physiological dose of VE in the LI diet for 4 weeks. In iodine-supplemented rats, thyroid epithelial cell ultrastructure injuries remained and were more severe. Relative weights of iodine-induced involuting glands were significantly reduced compared with the goiter, but still higher than control. Immunohistochemistry indicated that the expression of 4-hydroxynonenal, 8-hydroxyguanine, peroxiredoxin 5, and CD68 in thyroid increased (P<0.01), whereas thioredoxin reductase 1 decreased (P<0.01). VE supplementation attenuated thyroid cytotoxicity induced by iodine. A 50-fold VE dose was optimal in attenuating twofold iodine-induced thyroid cytotoxicity. However, VE supplementation did not reduce the weight or relative weight of the iodine-induced involuting gland. These results show that excess iodine leads to thyroid damage and VE supplementation can partly ameliorate iodine-induced thyroid cytotoxicity.

Free access

Hai-Fan Yu, Zhan-Peng Yue, Kai Wang, Zhan-Qing Yang, Hong-Liang Zhang, Shuang Geng, and Bin Guo

Although Gja1 has been proved to play an important role in uterine decidualization, its regulatory mechanism remains largely unknown. Here, we showed that Gja1 was highly expressed in the decidual cells and promoted the proliferation of uterine stromal cells and expression of Prl8a2 and Prl3c1, which were two well-known differentiation markers for decidualization. Further analysis revealed that Gja1 might act downstream of Acvr1 and cAMP to regulate the differentiation of uterine stromal cells. Administration of cAMP analog 8-Br-cAMP to Acvr1 siRNA-transfected stromal cells resulted in an obvious increase of Gja1 expression, whereas PKA inhibitor H89 impeded the induction of Gja1 elicited by Acvr1 overexpression, indicating that cAMP–PKA signal mediates the regulation of Acvr1 on Gja1 expression. In uterine stromal cells, knockdown of Gja1 blocked the cAMP induction of Hand2. Moreover, siRNA-mediated downregulation of Hand2 impaired the stimulatory effects of Gja1 overexpression on the expression of Prl8a2 and Prl3c1, whereas constitutive expression of Hand2 reversed the inhibitory effects of Gja1 siRNA on stromal differentiation. Meanwhile, Gja1 might play a vital role in the crosstalk between Acvr1 and Hand2. Collectively, Gja1 may act downstream of cAMP–PKA signal to mediate the effects of Acvr1 on the differentiation of uterine stromal cells through targeting Hand2.

Free access

Li Wang, Yufeng Zhao, Baosong Gui, Rongguo Fu, Feng Ma, Jun Yu, Ping Qu, Lei Dong, and Chen Chen

The role of free fatty acids (FFAs) in glucagon secretion has not been well established, and the involvement of FFA receptor GPR40 and its downstream signaling pathways in regulating glucagon secretion are rarely demonstrated. In this study, it was found that linoleic acid (LA) acutely stimulated glucagon secretion from primary cultured rat pancreatic islets. LA at 20 and 40 μmol/l dose-dependently increased glucagon secretion both at 3 mmol/l glucose and at 15 mmol/l glucose, although 15 mmol/l glucose reduced basal glucagon levels. LA induced an increase in cytoplasmic free calcium concentrations ([Ca2 +]i) in identified rat α-cells, which is reflected by increased Fluo-3 intensity under confocal microscopy recording. The increase in [Ca2 +]i was partly inhibited by removal of extracellular Ca2 + and eliminated overall by further exhaustion of intracellular Ca2 + stores using thapsigargin treatment, suggesting that both Ca2 + release and Ca2 + influx contributed to the LA-stimulated increase in [Ca2 +]i in α-cells. Double immunocytochemical stainings showed that GPR40 was expressed in glucagon-positive α-cells. LA-stimulated increase in [Ca2 +]i was blocked by inhibition of GPR40 expression in α-cells after GPR40-specific antisense treatment. The inhibition of phospholipase C activity by U73122 also blocked the increase in [Ca2 +]i by LA. It is concluded that LA activates GPR40 and phospholipase C (and downstream signaling pathways) to increase Ca2 + release and associated Ca2 + influx through Ca2 + channels, resulting in increase in [Ca2 +]i and glucagon secretion.