Search Results
You are looking at 1 - 3 of 3 items for
- Author: Yun-Li Yu x
- Refine by access: All content x
Search for other papers by Shou-Si Lu in
Google Scholar
PubMed
Search for other papers by Yun-Li Yu in
Google Scholar
PubMed
Search for other papers by Hao-Jie Zhu in
Google Scholar
PubMed
Search for other papers by Xiao-Dong Liu in
Google Scholar
PubMed
Search for other papers by Li Liu in
Google Scholar
PubMed
Search for other papers by Yao-Wu Liu in
Google Scholar
PubMed
Search for other papers by Ping Wang in
Google Scholar
PubMed
Search for other papers by Lin Xie in
Google Scholar
PubMed
Search for other papers by Guang-Ji Wang in
Google Scholar
PubMed
Berberine (BBR), a hypoglycemic agent, has shown beneficial metabolic effects for anti-diabetes, but its precise mechanism was unclear. Glucagon-like peptide-1 (GLP-1) is considered to be an important incretin that can decrease hyperglycemia in the gastrointestinal tract after meals. The aim of this study was to investigate whether BBR exerts its anti-diabetic effects via modulating GCG secretion. Diabetes-like rats induced by streptozotocin received BBR (120 mg/kg per day, i.g) for 5 weeks. Two hours following the last dose, the rats were anaesthetized and received 2.5 g/kg glucose by gavage. At 15-minute and 30-minute after glucose load, blood samples, pancreas, and intestines were obtained to measure insulin and GCG using ELISA kit. The number of L cells in the ileum and β-cells in the pancreas were identified using immunohistology. The expression of proglucagon mRNA in the ileum was measured by RT-PCR. The results indicated that BBR treatment significantly increased GCG levels in plasma and intestine (P<0.05) accompanied with the increase of proglucagon mRNA expression and the number of L-cell compared with the controls (P<0.05). Furthermore, BBR increased insulin levels in plasma and pancreas as well as β-cell number in pancreas. The data support the hypothesis that the anti-diabetic effects of BBR may partly result from enhancing GCG secretion.
Search for other papers by Can Liu in
Google Scholar
PubMed
Search for other papers by Mian Zhang in
Google Scholar
PubMed
Search for other papers by Meng-yue Hu in
Google Scholar
PubMed
Search for other papers by Hai-fang Guo in
Google Scholar
PubMed
Search for other papers by Jia Li in
Google Scholar
PubMed
Search for other papers by Yun-li Yu in
Google Scholar
PubMed
Search for other papers by Shi Jin in
Google Scholar
PubMed
Search for other papers by Xin-ting Wang in
Google Scholar
PubMed
Search for other papers by Li Liu in
Google Scholar
PubMed
Search for other papers by Xiao-dong Liu in
Google Scholar
PubMed
Panax ginseng is one of the most popular herbal remedies. Ginsenosides, major bioactive constituents in P. ginseng, have shown good antidiabetic action, but the precise mechanism was not fully understood. Glucagon-like peptide-1 (GLP1) is considered to be an important incretin that can regulate glucose homeostasis in the gastrointestinal tract after meals. The aim of this study was to investigate whether ginseng total saponins (GTS) exerts its antidiabetic effects via modulating GLP1 release. Ginsenoside Rb1 (Rb1), the most abundant constituent in GTS, was selected to further explore the underlying mechanisms in cultured NCI-H716 cells. Diabetic rats were developed by a combination of high-fat diet and low-dose streptozotocin injection. The diabetic rats orally received GTS (150 or 300 mg/kg) daily for 4 weeks. It was found that GTS treatment significantly ameliorated hyperglycemia and dyslipidemia, accompanied by a significant increase in glucose-induced GLP1 secretion and upregulation of proglucagon gene expression. Data from NCI-H716 cells showed that both GTS and Rb1 promoted GLP1 secretion. It was observed that Rb1 increased the ratio of intracellular ATP to ADP concentration and intracellular Ca2 + concentration. The metabolic inhibitor azide (3 mM), the KATP channel opener diazoxide (340 μM), and the Ca2 + channel blocker nifedipine (20 μM) significantly reversed Rb1-mediated GLP1 secretion. All these results drew a conclusion that ginsenosides stimulated GLP1 secretion both in vivo and in vitro. The antidiabetic effects of ginsenosides may be a result of enhanced GLP1 secretion.
Search for other papers by Shuisheng Li in
Google Scholar
PubMed
Search for other papers by Yong Zhang in
Google Scholar
PubMed
Search for other papers by Yun Liu in
Google Scholar
PubMed
Search for other papers by Xigui Huang in
Google Scholar
PubMed
Search for other papers by Weiren Huang in
Google Scholar
PubMed
Search for other papers by Danqi Lu in
Google Scholar
PubMed
Search for other papers by Pei Zhu in
Google Scholar
PubMed
Search for other papers by Yu Shi in
Google Scholar
PubMed
Search for other papers by Christopher H K Cheng in
Google Scholar
PubMed
Search for other papers by Xiaochun Liu in
Google Scholar
PubMed
State Key Laboratory of Biocontrol, Department of Biochemistry, College of Ocean, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
Search for other papers by Haoran Lin in
Google Scholar
PubMed
To ascertain the neuroendocrine function of the kisspeptin/GPR54 system in non-mammalian species, full-length cDNAs encoding for Kiss1 and Kiss2 as well as their putative cognate receptors GPR54a and GPR54b, were isolated from goldfish (Carassius auratus). The deduced protein sequences between Kiss1 and Kiss2 in goldfish share very low similarity, but their putative mature peptides (kisspeptin-10) are relatively conserved. RT-PCR analysis demonstrated that the goldfish kiss1 gene (gfkiss1) is highly expressed in the optic tectum-thalamus, intestine, kidney, and testis, while the goldfish kiss2 gene (gfkiss2) is mainly detected in the hypothalamus, telencephalon, optic tectum thalamus, adipose tissue, kidney, heart, and gonads. The two receptor genes (gfgpr54a and gfgpr54b) are highly expressed in the brain regions including telencephalon, optic tectum thalamus, and hypothalamus. Both mature goldfish kisspeptin-10 peptides (gfKiss1–10 and gfKiss2–10) are biologically active as they could functionally interact with the two goldfish receptors expressed in cultured eukaryotic cells to trigger the downstream signaling pathways with different potencies. The actions of gfKiss1–10 and gfKiss2–10 on LH secretion were further investigated in vitro and in vivo. Intraperitoneal administration of gfKiss1–10 to sexually mature female goldfish could increase the serum LH levels. However, this peptide does not significantly influence LH release from goldfish pituitary cells in primary culture, indicating that the peptide does not exert its actions at the pituitary level. On the other hand, gfKiss2–10 appears to be a much less potent peptide as it exhibits no significant in vivo bioactivity and is also inactive on the primary pituitary cells.